請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽明 | |
| dc.contributor.author | Po-Han Lin | en |
| dc.contributor.author | 林柏翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:32:18Z | - |
| dc.date.available | 2020-07-31 | |
| dc.date.copyright | 2015-07-31 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-29 | |
| dc.identifier.citation | [1] Witkin, A. and M. Kass, Spacetime constraints, in Proceedings of the 15th annual conference on Computer graphics and interactive techniques1988, ACM. p. 159- 168.
[2] Ngo, J.T. and J. Marks, Spacetime constraints revisited, in Proceedings of the 20th annual conference on Computer graphics and interactive techniques1993, ACM: Anaheim, CA. p. 343-350. [3] Cohen, M.F., Interactive spacetime control for animation, in Proceedings of the 19th annual conference on Computer graphics and interactive techniques1992, ACM. p. 293-302. [4] Liu, Z., S.J. Gortler, and M.F. Cohen, Hierarchical spacetime control, in Proceedings of the 21st annual conference on Computer graphics and interactive techniques1994, ACM. p. 35-42. [5] Brand, M. and A. Hertzmann, Style machines, in Proceedings of the 27th annual conference on Computer graphics and interactive techniques2000, ACM Press/Addison-Wesley Publishing Co. p. 183-192. [6] Jenkins, O.C., P. Wrotek, and M. McGuire, Dynamic humanoid balance through inertial control, in IEEE-RAS 7th International Conference on Humanoid Robots2007. [7] Liu, C.K., Z. Popovi, and #263, Synthesis of complex dynamic character motion from simple animations, in Proceedings of the 29th annual conference on Computer graphics and interactive techniques2002, ACM: San Antonio, Texas. p. 408-416. [8] Fang, A.C. and N.S. Pollard, Efficient synthesis of physically valid human motion. ACM Trans. Graph., 2003. 22(3): p. 417-426. [9] Safonova, A., J.K. Hodgins, and N.S. Pollard, Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces, in ACM SIGGRAPH 2004 Papers2004, ACM: Los Angeles, California. p. 514-521. [10] Jain, S., Y. Ye, and C.K. Liu, Optimization-based interactive motion synthesis. ACM Trans. Graph., 2009. 28(1): p. 1-12. [11] Muico, U., et al., Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph., 2009. 28(3): p. 1-9. [12] Liu, L., et al., Sampling-based contact-rich motion control. ACM Trans. Graph., 2010. 29(4): p. 1-10. [13] Silva, M.d., et al., Linear Bellman combination for control of character animation. ACM Trans. Graph., 2009. 28(3): p. 1-10. [14] Wampler, K., Z. Popovi, and #263, Optimal gait and form for animal locomotion, in ACM SIGGRAPH 2009 papers2009, ACM: New Orleans, Louisiana. p. 1-8. [15] Geijtenbeek, T., M.v.d. Panne, and A.F.v.d. Stappen, Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph., 2013. 32(6): p. 1-11. [16] Borno, M.A., M.d. Lasa, and A. Hertzmann, Trajectory Optimization for Full-Body Movements with Complex Contacts. IEEE Transactions on Visualization and Computer Graphics, 2013. 19(8): p. 1405-1414. [17] Geijtenbeek, T. and N. Pronost, Interactive Character Animation Using Simulated Physics: A State-of-the-Art Review. Comp. Graph. Forum, 2012. 31(8): p. 2492-2515. [18] Zhao, P. and M.v.d. Panne, User interfaces for interactive control of physics-based 3D characters, in Proceedings of the 2005 symposium on Interactive 3D graphics and games2005, ACM: Washington, District of Columbia. p. 87-94. [19] Kalyanakrishnan, S. and A. Goswami, Learning To Predict Humanoid Fall. International Journal of Humanoid Robotics, 2011. 08(02): p. 245-273. [20] H, P., et al., Online motion synthesis using sequential Monte Carlo. ACM Trans. Graph., 2014. 33(4): p. 1-12. [21] Tan, J., et al., Learning bicycle stunts. ACM Trans. Graph., 2014. 33(4): p. 1-12. [22] Sutton, R. and A. Barto, Reinforcement Learning: An Introduction. 1998. [23] Stanley, K.O. and R. Miikkulainen, Evolving Neural Networks Through Augmenting Topologies. Evolutionary Computation, 2002. 10: p. 99-127. [24] Project, Y.S.A.R., et al., Anthropometry and Mass Distribution for Human Analogues: Military male aviators. 1988: Anthropology Research Project. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53882 | - |
| dc.description.abstract | 本論文提出了一個嶄新的動作合成問題,根據上半身的動作軌跡產生出對應的下半身運動軌跡,並且讓這個動作在物理模擬引擎運算的時候可以令整個身體維持平衡,而為了解決這個問題,我們利用增強式學習,讓電腦能夠在不斷的進行嘗試之後找到一個最好的策略來應付不同的上半身運動軌跡。當一個上半身的運動軌跡進入到我們系統,首先會對這個只有上半身的動作進行一次簡單的物理模擬,藉此從中擷取出這個動作的一些特徵,再輸入事前已經訓練好的類神經網路模型,而這個網路模型所得到的響應就會是我們下半身相對應動作的特徵,之後再經過一個轉換演算法將下半身動作的特徵轉換成動作軌跡,將這個動作軌跡與原本的上半身動作軌跡結合起來同時驅動的話,就是我們最後所得到的動畫。利用增強式學習讓電腦自行學習出平衡的策略方法,可以讓我們不需要過度的花費時間在尋找及調整以往利用最佳化方法時所需的目標函數以及限制函數,並且這種方法也比較符合人類在初學一個新的動作時大腦及身體在運作的方式。 | zh_TW |
| dc.description.abstract | In this thesis we propose a new motion synthesis problem. For an upper body movement as input, system generates a corresponding lower body movement. When they animate at the same time in a physical simulation software, the human model should maintain body balance. To solve this problem, we try to use reinforce learning to let computer find the best control policy during iteratively testing and improving to adjust different upper body movement. When set an upper body movement as system input, first we execute a physical simulation for the upper-body-only movement to extract features of the movement. Then we pass these to a learned neural network model. The responses of the model is the features of corresponding lower body movement. We use a decoding algorithm to transfer output features to the lower body movement trajectory. In the last, we animate upper and lower body movement at the same time, it will be the final animation. This method makes us not to cost too much time in searching or revising objective and constraint function in traditional optimization methods. Also, the method is much like a human start to learn a new movement or skill. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:32:18Z (GMT). No. of bitstreams: 1 ntu-104-R02922089-1.pdf: 812136 bytes, checksum: 0761e42bc3355d6bc49296e569fee0a6 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES vii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Proposed Solution 2 1.3 Contributions 3 1.4 Thesis Organization 3 Chapter 2 RELATED WORK 5 2.1 Humanoid Character Animation 5 2.2 Physics-Based Animation 6 2.3 Balance Issue 7 2.4 Physical Simulation Software 8 Chapter 3 MARKOV DECISION PROCESS 10 3.1 System Overview 11 3.2 State Representation 12 3.3 Policy Search 14 3.4 Policy Evaluation and Improvement 16 Chapter 4 CHARACTER MODEL 19 4.1 Static model editing 20 4.2 Balance By Lower Body Movement 21 4.3 Stepping 22 Chapter 5 EXPERIMENTS AND RESULTS 24 5.1 Implement Environment 24 5.2 Results 24 5.3 Limitation 28 Chapter 6 CONCLUTION AND FUTURE WORK 29 6.1 Conclusion 29 6.2 Future Work 30 Reference 31 Resume 34 | |
| dc.language.iso | en | |
| dc.subject | 增強式學習 | zh_TW |
| dc.subject | 動作合成 | zh_TW |
| dc.subject | 下半身平衡 | zh_TW |
| dc.subject | motion synthesis | en |
| dc.subject | lower body balance | en |
| dc.subject | reinforce learning | en |
| dc.title | 物理即時模擬下的人體肢體平衡 | zh_TW |
| dc.title | Real-Time Physics-Based Human Legs Balancing Simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁容輝,林奕成 | |
| dc.subject.keyword | 動作合成,增強式學習,下半身平衡, | zh_TW |
| dc.subject.keyword | motion synthesis,reinforce learning,lower body balance, | en |
| dc.relation.page | 34 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 793.1 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
