Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53644
Title: 以時序矩陣分解方法追蹤個人喜好之概念飄移
Temporal Matrix Factorization for Tracking Concept Drift in Individual User Preferences
Authors: Yung-Yin Lo
羅雍穎
Advisor: 廖婉君(Wanjiun Liao)
Keyword: 推薦系統,評分預測,矩陣分解,時間動態,概念飄移,
Recommender Systems,Rating Prediction,Matrix Factorization,Temporal Dynamics,Concept Drift,
Publication Year : 2015
Degree: 碩士
Abstract: 在這個巨量資料的時代,人們無時無刻從網際網路中接收大量的訊息。為了解決資訊過載所造成的負擔並讓使用者快速找到理想的商品,提供精準且適時的推薦對於服務供應商及使用者雙方而言皆是一個重要的議題。在推薦系統的研究領域中,評分預測是最根本的基礎問題之一,其中矩陣分解已是個被廣泛採用的方法。基於歷史的評分數據,矩陣分解利用潛在因素模型以獲得固定的使用者偏好及商品特性,然而使用者的偏好並非一成不變,反而會受到現實生活中各種因素的影響而有所變動,為了滿足其當前的品味及需求,模擬使用者偏好隨時間的演變是設計推薦系統的重要關鍵。有鑑於此,我們提出時序矩陣分解方法以追蹤各個使用者偏好之概念飄移:藉由進一步延伸stochastic gradient descent 方法及利用Lasso regression,我們針對每個使用者的心境轉變進行模擬。各方面的實驗結果皆顯示我們所提出的時序矩陣分解方法能夠 (1) 追蹤使用者偏好的演變、(2) 探討不同資料集之中使用者的心境轉變特性,以及 (3) 與原本的矩陣分解方式相比,我們所提出的方法能達到更準確的預測。
In the era of big data, people are overloaded with massive amounts of information from the Internet. As such, whether service providers can provide accurate and timely recommendations for users to quickly locate desirable items is critical to both users and service providers. In the research area of recommender systems, rating prediction is one of the most fundamental problems and the matrix factorization (MF) approach has been widely adopted for solving the rating prediction problem. The MF approach utilizes the latent factor model to obtain static user preferences and item characteristics based on the historical rating data. However, user preferences are not static but full of dynamics in the real world and therefore modeling the temporal evolution of user preferences is a key for recommender systems to satisfy users’ current taste and need. In view of this, we develop Temporal Matrix Factorization (TMF) that is capable of tracking concept drift in individual user preferences. This is done by modifying the stochastic gradient descent method for MF and modeling the transition at the individual level via the Lasso regression. Various experiments on both synthetic and several real datasets show that our TMF approach is able to (i) track the evolution of user preferences, (ii) investigate the intrinsic properties of the transition on different datasets and (iii) achieve more accurate predictions than the original MF approach.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53644
Fulltext Rights: 有償授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
892.22 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved