Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53644
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖婉君(Wanjiun Liao)
dc.contributor.authorYung-Yin Loen
dc.contributor.author羅雍穎zh_TW
dc.date.accessioned2021-06-16T02:26:53Z-
dc.date.available2020-09-02
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-08-04
dc.identifier.citation[1] Matt Marshall. Aggregate knowledge raises $5m from kleiner, on a roll. Venture Beat, 2006.
[2] Xavier Amatriain and Justin Basilico. Netflix recommendations: beyond the 5 stars (part 1). Netflix Tech Blog, 6, 2012.
[3] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009:4, 2009.
[4] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the useritem matrix: A survey of the state of the art and future challenges. ACM Computing Surveys (CSUR), 47(1):3, 2014.
[5] Xavier Amatriain. Mining large streams of user data for personalized recommendations. ACM SIGKDD Explorations Newsletter, 14(2):37–48, 2013.
[6] Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. In Proceedings of the 22nd international conference on World Wide Web, pages 897–908. International World Wide Web Conferences Steering Committee, 2013.
[7] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In Advances in neural information processing systems, pages 1257–1264, 2007.
[8] Neil D Lawrence and Raquel Urtasun. Non-linear matrix factorization with Gaussian processes. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 601–608. ACM, 2009.
[9] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. Computer, (8):30–37, 2009.
[10] Brandyn Webb. Netflix update: Try this at home. Blog post sifter. org/simon/journal/20061211.html, 2006.
[11] Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer Science Department, Trinity College Dublin, 106, 2004.
[12] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the 14th ACM international conference on Information and knowledge management, pages 485–492. ACM, 2005.
[13] Neal Lathia, Stephen Hailes, and Licia Capra. Temporal collaborative filtering with adaptive neighbourhoods. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 796–797. ACM, 2009.
[14] Xiwang Yang, Yang Guo, Yong Liu, and Harald Steck. A survey of collaborative filtering based social recommender systems. Computer Communications, 41:1–10, 2014.
[15] Amit Goyal, Francesco Bonchi, and Laks VS Lakshmanan. Learning influence probabilities in social networks. In Proceedings of the third ACM international conference on Web search and data mining, pages 241–250. ACM, 2010.
[16] Róbert Pálovics, András Benczúr, et al. Temporal influence over the last.fm social network. In Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on, pages 486–493. IEEE, 2013.
[17] Róbert Pálovics, András A Benczúr, Levente Kocsis, Tamás Kiss, and Erzsébet Frigó. Exploiting temporal influence in online recommendation. In Proceedings of the 8th ACM Conference on Recommender systems, pages 273–280. ACM, 2014.
[18] Tsunghan Wu, Sheau-Harn Yu, Wanjiun Liao, and Cheng-Shang Chang. Temporal bipartite projection and link prediction for online social networks. In Big Data (Big Data), 2014 IEEE International Conference on, pages 52–59. IEEE, 2014.
[19] Yehuda Koren. Collaborative filtering with temporal dynamics. Communications of the ACM, 53(4):89–97, 2010.
[20] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 426–434. ACM, 2008.
[21] Noam Koenigstein, Gideon Dror, and Yehuda Koren. Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In Proceedings of the fifth ACM conference on Recommender systems, pages 165–172. ACM, 2011.
[22] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.
[23] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G Schneider, and Jaime G Carbonell. Temporal collaborative filtering with bayesian probabilistic tensor factorization. In SDM, volume 10, pages 211–222. SIAM, 2010.
[24] Dimitrios Rafailidis and Alexandros Nanopoulos. Modeling the dynamics of user preferences in coupled tensor factorization. In Proceedings of the 8th ACM Conference on Recommender systems, pages 321–324. ACM, 2014.
[25] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link prediction using matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(2):10, 2011.
[26] Samaneh Moghaddam, Mohsen Jamali, and Martin Ester. Etf: extended tensor factorization model for personalizing prediction of review helpfulness. In Proceedings of the fifth ACM international conference on Web search and data mining, pages 163–172. ACM, 2012.
[27] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan Hanjalic, and Nuria Oliver. Tfmap: Optimizing map for top-n context-aware recommendation. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, pages 155–164. ACM, 2012.
[28] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1):35–45, 1960.
[29] Zhengdong Lu, Deepak Agarwal, and Inderjit S Dhillon. A spatio-temporal approach to collaborative filtering. In Proceedings of the third ACM conference on Recommender systems, pages 13–20. ACM, 2009.
[30] San Gultekin and John Paisley. A collaborative kalman filter for time-evolving dyadic processes. In Data Mining (ICDM), 2014 IEEE International Conference on, pages 140–149. IEEE, 2014.
[31] John Z Sun, Kush R Varshney, and Karthik Subbian. Dynamic matrix factorization: A state space approach. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pages 1897–1900. IEEE, 2012.
[32] John Z Sun, Dhruv Parthasarathy, and Kush R Varshney. Collaborative kalman filtering for dynamic matrix factorization. Signal Processing, IEEE Transactions on, 62(14):3499–3509, 2014.
[33] Rolf Johansson. System modeling identification. 1993.
[34] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.
[35] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel stochastic gradient method for matrix factorization in shared memory systems. ACM Transactions on Intelligent Systems and Technology (TIST), 6(1):2, 2015.
[36] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A learning-rate schedule for stochastic gradient methods to matrix factorization. In Advances in Knowledge Discovery and Data Mining, pages 442–455. Springer, 2015.
[37] Ciao - wikipedia. https://en.wikipedia.org/wiki/Ciao.
[38] The data source of ciao and epinions datasets. http://www.public.asu.edu/~jtang20/datasetcode/truststudy.htm.
[39] The data source of flixster datasets. http://www.cs.sfu.ca/~sja25/personal/datasets/.
[40] The data source of movielens datasets. http://grouplens.org/datasets/movielens/.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53644-
dc.description.abstract在這個巨量資料的時代,人們無時無刻從網際網路中接收大量的訊息。為了解決資訊過載所造成的負擔並讓使用者快速找到理想的商品,提供精準且適時的推薦對於服務供應商及使用者雙方而言皆是一個重要的議題。在推薦系統的研究領域中,評分預測是最根本的基礎問題之一,其中矩陣分解已是個被廣泛採用的方法。基於歷史的評分數據,矩陣分解利用潛在因素模型以獲得固定的使用者偏好及商品特性,然而使用者的偏好並非一成不變,反而會受到現實生活中各種因素的影響而有所變動,為了滿足其當前的品味及需求,模擬使用者偏好隨時間的演變是設計推薦系統的重要關鍵。有鑑於此,我們提出時序矩陣分解方法以追蹤各個使用者偏好之概念飄移:藉由進一步延伸stochastic gradient descent 方法及利用Lasso regression,我們針對每個使用者的心境轉變進行模擬。各方面的實驗結果皆顯示我們所提出的時序矩陣分解方法能夠 (1) 追蹤使用者偏好的演變、(2) 探討不同資料集之中使用者的心境轉變特性,以及 (3) 與原本的矩陣分解方式相比,我們所提出的方法能達到更準確的預測。zh_TW
dc.description.abstractIn the era of big data, people are overloaded with massive amounts of information from the Internet. As such, whether service providers can provide accurate and timely recommendations for users to quickly locate desirable items is critical to both users and service providers. In the research area of recommender systems, rating prediction is one of the most fundamental problems and the matrix factorization (MF) approach has been widely adopted for solving the rating prediction problem. The MF approach utilizes the latent factor model to obtain static user preferences and item characteristics based on the historical rating data. However, user preferences are not static but full of dynamics in the real world and therefore modeling the temporal evolution of user preferences is a key for recommender systems to satisfy users’ current taste and need. In view of this, we develop Temporal Matrix Factorization (TMF) that is capable of tracking concept drift in individual user preferences. This is done by modifying the stochastic gradient descent method for MF and modeling the transition at the individual level via the Lasso regression. Various experiments on both synthetic and several real datasets show that our TMF approach is able to (i) track the evolution of user preferences, (ii) investigate the intrinsic properties of the transition on different datasets and (iii) achieve more accurate predictions than the original MF approach.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:26:53Z (GMT). No. of bitstreams: 1
ntu-104-R02921080-1.pdf: 913629 bytes, checksum: 090610b6a497924996523ef586a13b12 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 (i)
致謝 (ii)
中文摘要 (iv)
Abstract (v)
Contents (vi)
List of Figures (viii)
List of Tables (ix)
1 Introduction (1)
2 Related Work (5)
2.1 Matrix Factorization (5)
2.2 Time-dependent Collaborative Filtering (7)
2.3 Tensor Factorization (9)
2.4 Collaborative Kalman Filter (10)
3 Problem Definition (13)
4 Temporal Matrix Factorization (15)
4.1 Construction of a Time Series of Rating Matrices (16)
4.2 Learning a Time Series of User Latent Vectors (17)
4.3 Learning the Dynamics of the Concept Drift in the User Latent Vector (19)
4.4 Rating Prediction (21)
5 Experiment Results (22)
5.1 Experiments on the Synthetic Dataset (22)
5.2 Experiments on the Real Datasets (27)
6 Discussion (36)
6.1 Characteristics of Transition Matrix (36)
6.2 The Potential to Alleviate the Cold Start Problem (37)
7 Conclusions (39)
Bibliography (41)
dc.language.isoen
dc.subject評分預測zh_TW
dc.subject概念飄移zh_TW
dc.subject時間動態zh_TW
dc.subject推薦系統zh_TW
dc.subject矩陣分解zh_TW
dc.subjectRecommender Systemsen
dc.subjectMatrix Factorizationen
dc.subjectRating Predictionen
dc.subjectConcept Driften
dc.subjectTemporal Dynamicsen
dc.title以時序矩陣分解方法追蹤個人喜好之概念飄移zh_TW
dc.titleTemporal Matrix Factorization for Tracking Concept Drift in Individual User Preferencesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張正尚(Cheng-Shang Chang),林守德(Shou-De Lin),林軒田(Hsuan-Tien Lin)
dc.subject.keyword推薦系統,評分預測,矩陣分解,時間動態,概念飄移,zh_TW
dc.subject.keywordRecommender Systems,Rating Prediction,Matrix Factorization,Temporal Dynamics,Concept Drift,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2015-08-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
892.22 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved