Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5336
Title: 柯西黎曼 Li-Yau-Hamilton 不等式即其應用
CR Li-Yau-Hamilton Inequality and its Applications
Authors: Yen-Wen Fan
樊彥彣
Advisor: 張樹城(Shu-Cheng Chang)
Keyword: 擬埃爾米特,Li-Yau-Hamilton,Gap 定理,Harnack 不等式,
Li-Yau-Hamilton,Gap theorem,CR manifold,Harnack,
Publication Year : 2014
Degree: 博士
Abstract: 這篇文章包含三大部分,第一部分證明矩陣形式的 Li-Yau-Hamilton Harnack 不等式。第二部份延續第一部分的工作,推廣至(1,1)-form 形式的 Li-Yau-Hamilton Harnack 不等式。第三部份將應用這不等式証明柯西黎曼上的 Gap 定理。
In the first part of thesis, we first derive the CR analogue of matrix Li-Yau-Hamilton
inequality for a positive solution to the CR heat equation in a closed pseudohermitian (2n+1)-
manifold with nonnegative bisectional curvature and bitorsional tensor. We then obtain the
CR Li-Yau gradient estimate in a standard Heisenberg group. Finally, we extend the CR
matrix Li-Yau-Hamilton inequality to the case of Heisenberg groups. As a consequence, we
derive the Hessian comparison property in the standard Heisenberg group.
In the second part, we study the CR Lichnerowicz-Laplacian heat equation deformation of
(1; 1)-tensors on a complete strictly pseudoconvex CR (2n+1)-manifold and derive the linear
trace version of Li-Yau-Hamilton inequality for positive solutions of the CR Lichnerowicz-
Laplacian heat equation. We also obtain a nonlinear version of Li-Yau-Hamilton inequality
for the CR Lichnerowicz-Laplacian heat equation coupled with the CR Yamabe flow and
trace Harnack inequality for the CR Yamabe flow.
In the last part, by applying a linear trace Li-Yau-Hamilton inequality for a positive
(1; 1)-form solution of the CR Hodge-Laplace heat equation and monotonicity of the heat
equation deformation, we obtain an optimal gap theorem for a complete strictly pseudocovex
CR (2n+1)-manifold with nonnegative pseudohermitian bisectional curvature and vanishing
torsion. We prove that if the average of the Tanaka-Webster scalar curvature over a ball of
radius r centered at some point o decays as o(r^-2 ), then the manifold is flat.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5336
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf738.68 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved