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1. Abstract

In the first part of thesis, we first derive the CR analogue of matrix Li-Yau-Hamilton
inequality for a positive solution to the CR heat equation in a closed pseudohermitian (2n+1)-
manifold with nonnegative bisectional curvature and bitorsional tensor. We then obtain the
CR Li-Yau gradient estimate in a standard Heisenberg group. Finally, we extend the CR
matrix Li-Yau-Hamilton inequality to the case of Heisenberg groups. As a consequence, we
derive the Hessian comparison property in the standard Heisenberg group.

In the second part, we study the CR Lichnerowicz-Laplacian heat equation deformation of
(1, 1)-tensors on a complete strictly pseudoconvex CR (2n+ 1)-manifold and derive the linear
trace version of Li-Yau-Hamilton inequality for positive solutions of the CR Lichnerowicz-
Laplacian heat equation. We also obtain a nonlinear version of Li-Yau-Hamilton inequality
for the CR Lichnerowicz-Laplacian heat equation coupled with the CR Yamabe flow and
trace Harnack inequality for the CR Yamabe flow.

In the last part, by applying a linear trace Li-Yau-Hamilton inequality for a positive
(1,1)-form solution of the CR Hodge-Laplace heat equation and monotonicity of the heat
equation deformation, we obtain an optimal gap theorem for a complete strictly pseudocovex
CR (2n+ 1)-manifold with nonnegative pseudohermitian bisectional curvature and vanishing
torsion. We prove that if the average of the Tanaka-Webster scalar curvature over a ball of
radius r centered at some point o decays as o (r~2), then the manifold is flat.
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2. Introduction

We briefly introduce our works and results.
In the seminal paper [LY], P. Li and S.-T. Yau established the parabolic Li-Yau Harnack
estimate for the positive solution u(zx,t) of the time-independent heat equation

Ou (x,t)

ot
in a complete Riemannian /-manifold with nonnegative Ricci curvature. Here A is the
Laplace-Beltrami operator. Later in [H2], Richard Hamilton extended the Li-Yau estimate
to the full matrix version of the Hessian estimate of v under the stronger assumptions that
M is Ricci parallel and of nonnegative sectional curvature. Furthermore, Hamilton ([H1])
proved the matrix Harnack inequality for solutions to the Ricci flow

0 i \ L ,t

(2.2) % = 2Ry (z,1)
when the curvature operator is nonnegative. This inequality is called the “Li-Yau-Hamilton”
type estimates. Since then, there are many additional works in this direction which cover
various different geometric evolution equations such as the mean curvature flow ([H2]), the
Kahler-Ricci flow ([Cal), the Yamabe flow ([C]), etc.

On the other hand, the K&hler-Ricci curvature (1,1)-tensor of a Kéhler-Ricci flow solu-
tion satisfies a Lichnerowicz-Laplacian heat equation. In general, the Hodge-Laplacian heat
equation on symmetric (p, p)-tensors is a geometrically interesting system and has been exten-
sively studied since the original works of Hodge and Kodaira ( [Mo] and references therein).
For instances, we refer to the Lichnerowicz-Laplacian heat equation on (1, 1)-tensors and the
Hodge-Laplacian heat equation on (p, p)-tensors as in [NN].

Along this line with method of Li-Yau gradient estimate, H.-D. Cao and S.-T. Yau ([CY])
studied the heat equation

(2.1) = Au(x,t)

Ou (x,t)
ot
in a closed [-manifold with a positive measure and a subelliptic operator with respect to
the sum of squares of vector fields L = " X2 — Y, h < [ with Y = Y. ¢ X; where
Xy, Xa, ..., X}, are smooth vector fields satisfying Hérmander’s condition : the vector fields
together with their commutators up to finite order span the tangent space at every point of
M. Suppose that [X;, [X;, Xj]] can be expressed as linear combinations of X;, X, ..., X}
and their brackets [X1, Xs], ..., [X;—1, X]. They showed that the gradient estimate for the

positive solution u(x,t) of (2.3) on M x [0, c0).
In the first part of this paper, we focus on the CR Li-Yau-Hamilton type gradient estimate
for the positive solution u(x,t) of the CR heat equation

ou (z,t)
ot

(2.3) = Lu(z,t)

(2.4) = Ay (z,1) .
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and for the positive symmetric (1, 1)-form 7(x, t) of CR Lichnerowicz-Laplacian heat equation
0

(25) anaﬁ =4 [AbnaB + 2Ra"y,u5n'yﬁ - (R'yﬁna"y + Roc’?n’yB)] :

On the other hand, we are also interested in the coupled heat equation. Let 6(t) be a family

of smooth contact forms and J(t) be a family of CR. structures on (M3, Jy, #) with J(0) = Jy

and 6(0) = 0. In the paper of [CKW], we consider the following torsion flow which is the
CR analogue of the Hamilton Ricci flow:

0

= J = 2AJO
26) {a,=2
on M x [0,T) with J(t) = i0' ® Z; —i0' ® Z; and Ayy(t) = Apnb* @ Zy + A0 @ Zy.
In particular if the initial torsion is vanishing, the torsion flow (2.6) is equivalent to the CR
Yamabe flow

9 - _
. 50(t) = ~2R(1)0(1).
6(0) =0,
in a closed CR 3-manifold. We will study the Li-Yau-Hamilton inequality for the coupled

CR Yamabe flow as well.
Finally, we recall some definitions as followings.

Definition 2.1. Let (M, J,0) be a closed pseudohermitian 3-manifold. We call a CR struc-
ture J spherical if Cartan curvature tensor (011 vanishes identically. Here

1 1 27
Qu = EWH + §WA11 —Appg— A

3 1,11
Note that (M, J,0) is called a closed spherical pseudohermitian 3-manifold if J is a spherical
structure. We observe that the spherical structure is CR invariant cmgi a closed spherical
pseudohermitian 3-manifold (M, J,0) is locally CR equivalent to (S3,.J,0).

Definition 2.2. Let (M, J,0) be a closed pseudohermitian (2n+ 1)-manifold with & = ker 6.
A piecewise smooth curve 7y : [0,1] — M s said to be a Legendrian curve if (1) € &
whenever (1) exists. The length of v is then defined by

1
1) = [ (€30, 5(7) b
The Carnot-Carathéodory distance d.. between two points p,q € M is defined by

dcc(pa Q) - an{l(’y” Y S vaq}7
where C,, , s the set of all Legendrian curves which join p and q.

2.1. CR Li-Yau Gradient Estimate and Harnack Inequality. Let u be the positive
solution of (2.4) and denote
f(z,t) =lnu(z,t).
Then f (x,t) satisfies the equation

0

(2.8) (Ab - a) F (et = — |Vaf (2, 0)]
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We observe that one of difficulties is to deal with CR Bochner formula which involving a
term (JV,f, V,fo) that has no analogue in the Riemannian case. In order to overcome this
difficulty, we introduce a new scalar Harnack quantity

(2.9) F(x,t, a, c) :t(\vbf\z(x)+aft+ctf§ (:U)) ,

with f = Inu by adding an extra term ¢fZ to |V, f |2 + af; which was appeared in Li-Yau
estimate ([LY]). Then one can derive CR versions of Li-Yau gradient estimates and classical
Harnack inequality.

Theorem 2.1. ([CKL1|) Let (M, J, 0) be a closed pseudohermitian (2n + 1)-manifold.
Suppose that

2Ric(X,X)— (n—2)Tor (X, X)>0
forall X € Ty g ® Tyo1. If u(x,t) is the positive solution of

(30 2Yute o

[Ab, T] u=0
on M x [0, co). Then f (z,t) =Inwu(x,t) satisfies the following subgradient estimate

with

9
(2.10) 19— Dy B < 2R,
n 3 t

When the manifold is complete noncompact, the proof of CR Li-Yau gradient estimate
(2.11) relies on the CR sub-Laplacian comparison property and the extra up-growth property
with |ug| < %u that has no analogue in the Riemannian case. However, both properties holds
in a standard Heisenberg group H"™ which is flat and vanishing torsion. Then we are able to
derive the following CR Li-Yau gradient estimate on H".

Theorem 2.2. ([CFTW]) Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg
group. If u(x,t) is the positive solution of the CR heat equation (2.4) on H" x [0,00). Let
¢ = Inu, for any o < —1, then there exists a positive constant C' depending on « such that

(2.11) IVyol” + ap, + 102 < €.

By applying Theorem 2.2, we have the following CR Liouville-type theorem for a positive
pseudoharmonic function u on (H", J, 8) which recaptured the Liouville theorem due to
Chang-Kuo-Tie [CKT] and Koranyi and Stanton ([KS]) by a different method.

Corollary 2.3. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(z,t) is the positive smooth function with Ayu = 0, then u(z,t) is constant. That is, there
does not exist any positive nonconstant pseudoharmonic function in H".

By using the method of CR Li-Yau gradient estimate ([LY], [CKL1]) and CR Bochner
formula, we derive a CR gradient estimate and CR Harnack inequality for the positive
solution of the CR heat equation (2.4) in (2n + 1)-dimensional Heisenberg group.
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Corollary 2.4. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(z,t) is the positive solution of the CR heat equation (2.4) on H" x [0,00), we have the
Harnack inequality

C
u(z1,t1) t de(z1,z )2
(2.12) o) o (t_) exp< (r102) )

for any x1,x9 in H" and 0 < t; < ty < oo, where d.(x1,x2) is the Carnot-Carathéodory
distance between x1 and xo.

As a consequence of Corollary 2.4 and [CY], we have the following upper bound estimate
for the heat kernel of (2.4).

Corollary 2.5. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group and
H(x,y,t) be the heat kernel of (2.4) on M x [0,00). Then for some constant 6 > 1 and
0 <e<1, H(z,y,t) satisfies the estimate

2

1) B <OV BV B oo (- EE0)

with C(€) — 0o as € — 0.

Once we have the upper bound estimate for the heat kernel and the sub-laplacian com-
parison property, then by applying the arguments of Li-Tam as in [LT] or [Li], we have the
following mean value inequality.

Corollary 2.6. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group and g
be subsolution of the CR heat equation such that

(28 s <0

Then for some constant C' depend on d, 7,1, such that0 <6 <1, 0<7<T,0<n< %, the
following inequality holds for any p > 2v/T,

(2.14) sup g < C/ / g (y, s) dyds.
Bp((1=8)p) X [7,T] (1-m)7 J Bp(p

2.2. CR Matrix Li-Yau-Hamilton Inequality. Let u(z,t) be the positive solution of
the CR heat equation (2.4). For the CR Li-Yau gradient estimate as in the paper [CKL1],
we observe that one of difficulties is to deal with CR Bochner formula which involving a
term (JV,f, V,fo) that has no analogue in the Riemannian case. In order to overcome this
difficulty, we introduce a new scalar Harnack quantity F' = t[|V, f \2 +afi+tfE with f =Inu
by adding an extra term ¢ f2 to |V, f|” + af, which was appeared in Li-Yau estimate ([LY]).

Now we want to find the right quantity for the CR matrix Li-Yau-Hamilton inequality.
By comparing the Harnack quantity in [CN] in the case of Kéhler manifolds, we define the
matrix Harnack quantity

Uallp at|u0|2

1 U
(2.15) NaB = §(ua5 + uBa) + Q?hoéB —b " haB
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2
by adding an extra term F' := —at‘”ﬁ' h.p in which positive constants a and b to be deter-
mined later (say a = 5;and b= 1).

Definition 2.3. ([GL]) Define the purely holomorphic Hessian operator P,js :
Popp = _Qi(AOW‘PW)B
and the purely holomorphic Poisson operator @) :

Ry = haB(PaBSD) = _Zi(Aa'ySOW)H

for any smooth function . Note that P50 = 0 = Qyp for any smooth function ¢ if Aws =0
on M.

Then, based on the following key estimate, we have Theorem 2.7.

Lemma 2.1. Let u(z,t) be the positive solution of the CR heat equation (2.4). Then
%(UQB + up,) satisfies the following :

1/0
— <§ — Ab) (UQB + U,Ba) = QROZ:Y(SBU’YS — RaS“&B — R(SBUQS + C&B?

2
where
CaB = 1 (.Anguﬁ — AWS,(SU’Y) haB —i—.l' (A,Y(;U;/g — Aﬁgu(g,y) haB
+in (Af‘y,@ua’y — Aa7u,7@) +1n (A"yB,ozUV — Awa,Bu’y)
= —(ReQu)h,z +n(ReP,zu).

Note that trC,5 = hO‘BC’aB = 0. In particular we have Ci7 =0 for n = 1. In addition if the
positive solution u satisfies P,gu = 0 which is the case when the torsion is vanishing, then
u,p satisfies the following CR Lichnerowicz-Laplacian heat equation ([CCF]) :

0
(5 - Ab) Uap = 2R 555045 — Rastisp — Rspllag.

Hence we have the following CR analogue of matrix Li-Yau-Hamilton inequality for any
positive solution u to (2.4).

Theorem 2.7. ([CEFTW]) Let M be a closed pseudohermitian (2n + 1)-manifold with non-
negative bisectional curvature and nonnegative bi-torsional tensor. Let u be the positive
solution of the CR heat equation (2.4). In addition if the positive solution u satisfies the
purely holomorphic Hessian operator P,zu = 0. Then

2
(2.16) (UOéB + uBa) + %[(uavﬂ + UBVa) + UVQVB] — 1—2%
fort >0 and any vector filed V =V, of type (1,0) on M. Here P,j is the purely holomorphic
Hessian operator (Definition 2.3). In particular, the CR matriz Li- Yau-Hamilton inequality
(2.16) holds in a closed pseudohermitian (2n + 1)-manifold of nonnegative bisectional cur-
vature and vanishing torsion. If we choose the optimal V. = —Vu/u and take the trace of
(2.16), we recapture the CR Li-Yau gradient estimate (2.10).

4
ha,B + ;UhaB >0



When the manifold is complete noncompact, we will need to use the CR Li-Yau Harnack
inequality (2.12) and Li-Tam mean value inequality (2.14) in the proof of the CR matrix
Li-Yau-Hamilton inequality (2.16). However, both estimates hold in a standard Heisenberg
group H" which is flat and vanishing torsion. Then as a consequence of Theorem 2.7, we
are able to derive the following CR matrix Li-Yau-Hamilton inequality on H".

Theorem 2.8. ([CEFTW]) Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg
group. If u(x,t) is the positive solution of the CR heat equation (2.4) on H" X [0,00). Then
the CR matriz Li- Yau-Hamilton inequality (2.16) holds.

By applying Theorem 2.8 to the heat kernel H(z,y,t) with V = —¥Z  we have the

following complex Hessian comparison theorem for » on H”. Such a Hessian comparison
property seems to be new in the standard (2n 4 1)-dimensional Heisenberg group H".

Corollary 2.9. Let (H", J,0) be the standard (2n+ 1)-dimensional Heisenberg group. Then
in the sense of distribution, we have

[(r*(2) 05 + (r*(2))5a) < (16 + Co)h (@)
for some constant Cy. In particular, we recapture the sub-Laplacian comparison property
Ayr*(x) < (16 + Co)n
in the Heisenberg group.

2.3. CR Linear Trace Li-Yau-Hamilton Inequality and Gap Theorem. We now
consider the CR Hodge-Laplacian

1 _
Apg = —§(Db +00)

for Kohn-Rossi Laplacian O,. For any (1, 1)-form n(z,t) = 1,50" A 6°, we study the CR
Hodge-Laplacian heat equation on M x [0,7")

in which connects to the existence problem of pseudo-Einstein CR (2n + 1)-manifolds with

n > 2. It follows from the CR Bochner-Weitzenbock Formula that the CR parabolic equation

above is equivalent to the CR analogue of Lichnerowicz-Laplacian heat equation (2.5).
Define the Harnack quadratic by

(2.17)

1 H
Z(z,t) (V) :=k {5 ((div Mag T (div n)&@) + (divn), Va + (divn), Va + VaVan.z | + -

for any vector field V € T' (M), H = haBnaB and k; to be determined later. Moreover,
Nap,o 18 denoted the component of covariant derivative of the tensor n with Reeb vector field
T.

The following is linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-Laplacian
heat equation.
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Theorem 2.10. ([CCF]) Let (M, J,0) be a closed strictly pseudoconvex CR (2n+1)-manifold
with nonnegative bisectional curvature and vanishing torsion. Let 1,5 (x,t) be a nonnegative
symmetric (1,1)-tensor satisfying the CR Lichnerowicz-Laplacian heat equation (2.5) on
M x [0,T) and 1,5, (2,0) = 0 at t = 0. In additional if M is complete noncompact, we
assume that there exists a constant a > 0 such that

T
[ e i duds < o
) M

T
[ e 19m )P duds < o
5 Jum
where r (x) is the Carnot-Carathéodory distance from a fixed point o and any § > 0. Then
Z (x,t) > 0,

and

for 0 < ky <8.

Then, based on the linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-
Laplacian heat equation. Lichnerowicz-Laplacian heat equation and then CR monotonicity
of heat equation deformation of positive (1, 1)-forms, we have the following CR gap Theorem.

Theorem 2.11. ([CF]) Let M be a complete noncompact strictly pseudoconver CR (2n+1)-
manifold with nonnegative bisectional curvature and vanishing torsion. Then M is flat if

(2.18) T Lo, RO =),

for some point o € M. Here R (y) is the Tanaka-Webster scalar curvature and V, (r) is the
volume of the ball B, (1) with respect to the Carnot-Carathéodory distance. As a consequence
if M 1is not flat, then

2
lim inf

minf o /B O(T)R(y) dp(y) >0

for any o € M.

2.4. The Coupled CR Yamabe Flow. We first study the following time-dependent CR,
heat equations with potentials

(2.19) % = 4Ayu — cRu

evolving by the CR Yamabe flow on M x [0,7). Here A, is the time-depending sublaplacian
and R(t) is the Tanaka-Webster scalar curvature with respect to the contact form 6 (¢). We
will derive differential Harnack estimates for positive solutions of (2.19) for ¢ = —2.

We also present its application of Theorem 2.7 to obtain the nonlinear version of Harnack
inequality for CR Lichnerowicz-Laplacian heat equation (2.5) coupled with the CR Yamabe
flow (5.15).

We expect our Harnack estimate will play an important role in the study of the CR Yamabe
flow. There are geometric quantities (for example the Tanaka-Webster scalar curvature)
which satisfy equation (2.20) under the CR Yamabe flow in a closed CR 3-manifold. Indeed,
these estimates can be used for understanding the singular models of positive Tanaka-Webster
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curvature under the CR Yamabe flow. In particular, this estimate should be useful in
understanding the Yamabe solitons which one expects to model finite time singularities of
the CR Yamabe flow.
Now we deal with ¢ = —2 in (2.19). In particular, it follows that for u = R
OR

ot
Then we have the CR Li-Yau-Hamilton inequality of the Yamabe flow (5.15). That is

(2.20) =4AR +2R*.

Theorem 2.12. ([CCK]) Let (M, J,0) be a closed spherical pseudohermitian 3-manifold with
positive Tanaka-Webster curvature and vanishing torsion. Then under the CR Yamabe flow
(5.15),

IV,R]> R, 1
2.21 4—— — — — - <0.
( ) R? Rt~
Furthermore, we get a subgradient estimate of logarithm of the positive Tanaka-Webster
curvature )
|V, R 1
<
RZ  — 4t

for allt € (0,7).

Remark 2.1. 1. Let (M, J,0) be a closed pseudohermitian 3-manifold. We call a CR
structure J spherical if Cartan curvature tensor Q11 vanishes identically. Here

Qu = %Wn + %WAH — Ao — %An,n'
Note that (M, J,0) is called a closed spherical pseudohermitian 3-manifold if J is a spherical
structure. We observe that the spherical structure is CR invariant cmd a closed spherical
pseudohermztzan 3-manifold (M, J,0) is locally CR equivalent to (S®,J, 9)
2. If (M, J, 0) is a closed pseudohermitian 3-manifold with Ay = 0, then Ry (x,0) =0
by the CR Bianchi identity. In additional if (M, J) is spherical, then under the CR Yamabe
flow (5.15), Ry (x,t) =0 for all t.

By Chow connectivity theorem, there always exists a Legendrian curve joining any two
points p and ¢, so the distance is finite. Now integrating (2.21) over (y(t),t) of a Legendrian
path ~ : [t1,ts] — M joining points zy, x in M, we obtain the following CR Harnack
inequality for the positive Tanaka-Webster curvature under the CR Yamabe flow.

Corollary 2.13. Let (M, J, 9) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka- Webster curvature and vanishing torsion. Then under the CR Yamabe flow (5.15),
we have for all points x1, xo in M and times t; < to,

t 1
R(z1,h) < () R(wa, ta) exp(5 L),

1
where
) b2 1.
I— mf/ (R+ SKla,, it
Y t1

and the infimum is taken over all Legendrian paths v with ~(t1) = x1 and y(ty) = xs.
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Finally, in the papers of B. Chow and R. Hamilton [CH], L. Ni and L.-F. Tam [NT1]
proved the nonlinear trace Li-Yau-Hamilton inequality for the coupled the Ricei flow and
Kaehler Ricci flow, respectively. Here we present its application of Theorem 2.7 to obtain
the nonlinear version of Li-Yau-Hamilton inequality for CR Lichnerowicz-Laplacian heat
equation (2.5) coupled with the CR Yamabe flow (5.15).

0
Theorem 2.14. ([CCF]) Let (M, J,0) be a closed spherical pseudohermitian 3-manifold
with positive Tanaka- Webster curvature and vanishing torsion. Let ny7 (x,t) be a positive

symmetric (1, 1)-tensor satisfying the CR Lichnerowicz-Laplacian heat equation (2.5) coupled
with the CR Yamabe flow (5.15) on M x [0,T) and 0,74 =0 for all t. Then

Zp=/Z+RH >0
on M x [0,T) for ky = 4. In particular, taking V =10

1
28pm1 + (R + ;)H >0
and

0 1
. i, VH >

with H = h''n 3.

As a consequence of Theorem 2.14 with 7,; = Ri1 = Rhy1, we have the following trace
Harnack inequality for the CR Yamabe flow (5.15) which turns out to be a special case of
the linear Harnack inequality for the CR Lichnerowicz-Laplacian heat equation (2.5) coupled
with the CR Yamabe flow (5.15) on a closed strictly pseudoconvex spherical CR 3-manifold.
This is the same as (2.21).

0
Corollary 2.15. Let (M, J,0) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka- Webster curvature and vanishing torsion. Then we have the following trace Harnack
inequality for the CR Yamabe flow (5.15)

0, 5
- > (.
Ot(t R)>0

Finally, we point out that, by applying Hamilton’s general method, one can obtain the
Harnack inequalities ([H1], [C]) to the CR Yamabe flow.

0
Theorem 2.16. ([CCF]) Let (M, J,0) be a closed spherical pseudohermitian 3-manifold with
positive Tanaka- Webster curvature and vanishing torsion. Then under the CR Yamabe flow

OR 2R 3
(2.23) o T P2VRV) G R V156 =0

for any V€ THO (M).

It is our hope that the similar nonlinear trace Li-Yau-Hamilton (2.22) holds as well for
the torsion flow (2.6) in a closed pseudohermitian 3-manifold.
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3. Preliminary

First we introduce some basic materials in a pseudohermitian (2n + 1)-manifold (see [L1],
[L2] for more details). Let (M, £) be a (2n+1)-dimensional, orientable, contact manifold with
contact structure £&. A CR structure compatible with £ is an endomorphism J : £ — & such
that J? = —1. We also assume that J satisfies the following integrability condition: If X
and Y are in &, then so are [JX, Y]+ [X, JY] and J([JX,Y]+[X, JY]) = [JX, JY]|—[X,Y].

Let {T, Z,, Z5} be a frame of TM @ C, where Z, is any local frame of T} 5, Z5 = Z, € Ty,
and T is the characteristic vector field. Then {6,00‘,95“}, which is the coframe dual to
{T, Z, Z5}, satisfies
(3.1) df = ih,50" N 6°

for some positive definite hermitian matrix of functions (h,3), if we have this contact struc-
ture, we also call such M a strictly pseudoconvex CR (2n + 1)-manifold.
The Levi form ( , ), is the Hermitian form on 73 ¢ defined by

(Z,W),, = —i{d8,Z \W).

We can extend ( , ), to Tp; by defining (Z, W>L9 = (Z,W),, forall Z,W € T\ . The Levi
form induces naturally a Hermitian form on the dual bundle of 7} o, denoted by ( , ) L and

hence on all the induced tensor bundles. Integrating the Hermitian form (when acting on
sections) over M with respect to the volume form du = 6 A (df)", we get an inner product
on the space of sections of each tensor bundle.

The pseudohermitian connection of (., #) is the connection V on 7'M @ C (and extended
to tensors) given in terms of a local frame Z, € T} by

VZa=0."® 25, VZs=0,"®27; VT =0,

where 0,7 are the 1-forms uniquely determined by the following equations:

do® =60 N0, +0NTP,
0=7,N0%
0=0."+ 65",

We can write (by Cartan lemma) 7, = A,,0" with A,, = A,,. The curvature of Webster-
Stanton connection, expressed in terms of the coframe {# = 6° 6%, 0}, is

% = II3" = dws™ — ws” Aw,”,
M® = I1,° = II,* = I13° = I1,° = 0.
Webster showed that IIz* can be written
5% = Rg® 50" NO7 + W5, 0" NO — W 5,0” NG +i05 AT —iTg A O°
where the coefficients satisfy

Rﬁ&pt_f - RaBUZ) = Raﬁ&;) = Rp&ﬁ&a Wﬁézw = ~yaB-
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Here R,",5 is the pseudohermitian curvature tensor, R,3 = RW‘SQB is the pseudohermitian
Ricci curvature tensor and A,p is the torsion tensor. Furthermore, we define the bi-sectional
curvature

Racwg(X, Y) = RaaﬁﬁXaXEYﬁYB
and the bi-torsion tensor
TCYB(X’ Y) = i(ABpoYa — AapoYB)
and the torsion tensor
Tor(X,Y) := h*’T,5(X,Y) = i(AqpX, Yo — AapXpYa)

for any X = XgZ,, Y =Y5Z, in T} .

We will denote components of covariant derivatives with indices preceded by comma;
thus write A,s,. The indices {0, o, @} indicate derivatives with respect to {7, Z,, Z5}. For
derivatives of a scalar function, we will often omit the comma, for instance, u, = Zau, 1,5 =
ZpZou — wo" (Z3) Zyu.

For a smooth real-valued function wu, the subgradient V, is defined by V,u € ¢ and
(Z,Vyu), = du(Z) for all vector fields Z tangent to contact plane. Locally Vyu =
Y o UaZo + uaZs. We also denote uy = Tu.

We can use the connection to define the subhessian as the complex linear map

(V) u Tio® Toy — Tr0 D Toa

by
(VI2u(Z) = V2V

In particular,

\Vou|* = 2uqus, |Viul* = 2(uaﬁuag + uaguaﬁ).
Also
Apu=Tr (V7)) =3, (Uaa + Uaa)-
The Kohn-Rossi Laplacian [, on functions is defined by
Oyp = 20,00 = (A + inT)p = =20,
and on (p, q)-forms is defined by
Oy = 2(9,05 + 040,

Next we recall the following commutation relations ([L1]). Let ¢ be a scalar function and
0 =0,0% be a (1,0) form, then we have

Spaﬁ = 9.0600
Pop = Ppa = hagPo;
Poa — Pao = Aaﬁ@ﬁ?

00,08 = Ta,60 Oazlys — 0y Aap s,

00,08 — Oqp0 — Ua,vAﬁB + O-’YA’_YB#JW



12

and
Cafy = Oapnpg = Aay05 —1iAas0y,
Oafy — Oanp = hagAsp0, — ihazAg;0p,
Oa8y = Oags = thpy0a,0+ Rapsio,.

Moreover for multi-index I = (i, ...,q,), J = (Bl, ...,Bq), we denote [(ap = p) =
(O ey Q15 fly Xt 1, -y @) . Then

p
Nrjux — My = ilgl (nl(ak:u)jAak)\ - Uf(ak:A)jAaku)
=1 ) )
=i 3> (M15(5,25) P30 = 113350 AL)
k=1
and

p q _
N~ Mipn = iz + ’;1 (o= 0, 7/\ﬂ T ,;1 15 (B.=7) RBk W/\/1

) p q
Nigop — Mg = Alizs — k; AN (apep)] T k; Ao 315 (8,=7):

4. CR Matrix Li-Yau-Hamilton Harnack Inequality

In the seminal paper [LY], P. Li and S.-T. Yau established the parabolic Li-Yau Harnack

estimate for the positive solution u(z,t) of the time-independent heat equation
ou (z,t)
ot

in a complete Riemannian [-manifold with nonnegative Ricci curvature. Here A is the
Laplace-Beltrami operator. Later in [H2], Richard Hamilton extended the Li-Yau estimate
to the full matrix version of the Hessian estimate of v under the stronger assumptions that M
is Ricci parallel and of nonnegative sectional curvature. Furthermore, Hamilton [H1] proved
the matrix Harnack inequality for solutions to the Ricci flow when the curvature operator
is nonnegative. This inequality is called the “Li-Yau-Hamilton” type estimates. Since then,
there are many additional works in this direction which cover various different geometric
evolution equations such as the mean curvature flow [H2|, the K&hler-Ricci flow [Ca], the
Yamabe flow [C], etc.

Along this line with method of Li-Yau gradient estimate, H.-D. Cao and S.-T. Yau ([CY])
studied the heat equation

= Au(x,t)

ou (z,t)

ot
in a closed [-manifold with a positive measure and a subelliptic operator with respect to
the sum of squares of vector fields L = Z?:1 X?2-Y h <l withY = Z:;l ¢; X; where
X1, Xs, ..., X}, are smooth vector fields satisfying Hormander’s condition : the vector fields
together with their commutators up to finite order span the tangent space at every point of
M. Suppose that [X;, [X;, Xj]] can be expressed as linear combinations of X 1, X, ..., X}
and their brackets [ X7, Xs], ..., [X;_1, X]. They showed that the gradient estimate for the
positive solution u(x,t) of (4.1) on M x [0, c0).

(4.1) = Lu(z,t)



13

Recently in the paper of [CKL1], we obtained the CR Cao-Yau type gradient estimate for
the positive solution u(z,t) of the CR heat equation

ou (x,t)
ot

in a closed pseudohermitian (2n + 1)-manifold (M, J, #) of nonnegative Tanaka-Webster

curvature and vanishing torsion. Here A, is the time-independent sub-Laplacian operator.

In this part, we will derive the following CR analogue of matrix Li-Yau-Hamilton inequality
for any positive solution u to (4.2).

(4.2) = Apu (z,t)

Theorem 4.1. Let M be a closed pseudohermitian (2n + 1)-manifold with nonnegative bi-
sectional curvature and nonnegative bi-torsional tensor. Let u be the positive solution of the
CR heat equation (4.2). In addition if the positive solution u satisfies the purely holomorphic
Hessian operator P,zu = 0. Then

1 t uol’
@3) (o + ) + 2l(uaVi + usbi) + Vo] - = Lok
fort >0 and any vector filed V =V, of type (1,0) on M. Here P,j is the purely holomorphic
Hessian operator (Definition 4.1).

4
haB + ;Uhag 2 0

Corollary 4.2. The CR matriz Li- Yau-Hamilton inequality (4.3) holds in a closed pseudo-
hermitian (2n + 1)-manifold of nonnegative bisectional curvature and vanishing torsion.

Remark 4.1. If we choose the optimal V = —Vu/u and take the trace of (4.3), we recapture
the following CR Li-Yau gradient estimate which was derived by Chang-Kuo-Lai in [CKL1]
and [CKL2] :

0 1||Vul|®>  ntlul>  4n

_u —_— _——

S0
o' T 1w 2w TFes

When the manifold is complete noncompact, we will need to use the CR Li-Yau Harnack
inequality (4.29) and Li-Tam mean value inequality (4.32) in the proof of the CR matrix
Li-Yau-Hamilton inequality (4.3). However, the proof of both inequalities rely on CR Li-Yau
gradient estimate (4.5). We refer to [CN] for some details.

As shown in section 4.2, the proof of CR Li-Yau gradient estimate (4.5) relies on the CR
sub-Laplacian comparison property (4.27) and the extra wug-growth property (see appendix
in [CFTW]) with |up| < €u that has no analogue in the Riemannian case. In particular,
both properties holds in a standard Heisenberg group H" which is flat and vanishing torsion.
However, both properties are wild open in a general complete noncompact pseudohermitian
(2n + 1)-manifold.

Then we are able to derive the following CR Li-Yau gradient estimate on H".

(4.4)

Theorem 4.3. Let (H",J,0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(z,t) is the positive solution of the CR heat equation (4.2) on H" x [0,00). Let ¢ = Inu,
for any o < —1, then there exists a positive constant C' depending on « such that

(4.5) IVyol” + ap, + 102 < €.
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By applying Theorem 4.3, we have the following CR Liouville-type theorem for a positive
pseudoharmonic function v on (H", J, 6) which recaptured the Liouville theorem due to
Chang-Kuo-Tie ([CKT]) and Koranyi and Stanton ([KS]) by a different method.

Corollary 4.4. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(z,t) is the positive smooth function with Ayu = 0, then u(z,t) is constant. That is, there
does not exist any positive nonconstant pseudoharmonic function in H".

From the previous discuss and Theorem 4.1, we have the CR matrix Li-Yau-Hamilton
inequality in (H", J,6) as in section 4.2.

Theorem 4.5. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(z,t) is the positive solution of the CR heat equation (4.2) on H" x [0,00). Then the CR
matriz Li- Yau-Hamilton inequality (4.3) holds.

Remark 4.2. We observe that from the proof of Theorem 4.5 that the CR matrixz Li- Yau-
Hamilton inequality (4.3) still holds in a complete noncompact pseudohermitian manifold
whenever both the CR sub-Laplacian comparison property (4.27) and the ug-growth property
hold. We should point out that the extra ug-growth property is equivalent to (4.35) that has
no analogue in Kdhler manifolds.

By applying Theorem 4.5 to the heat kernel H(z,y,t) with V = —¥ and observe that
the well-known asymptotic of H(x,o,t) ( [V], [Ga], [B], [Le], [T], [BBN], etc)

1
—tlog H(z,0,t) — Zr2(x)

as t — 0. Here r(z) be the Carnot-Carathéodory distance function to the origin o € H".
We have the following complex Hessian comparison theorem for » on H". Such a Hessian

comparison property seems to be new in the standard (2n+ 1)-dimensional Heisenberg group
H".

Corollary 4.6. Let (H", J,0) be the standard (2n+ 1)-dimensional Heisenberg group. Then
in the sense of distribution, we have

[(r*(2) a5 + (r*(2))54) < (16 + Co)h ()
for some constant Cy. In particular, we recapture the sub-Laplacian comparison property
Ayr*(x) < (16 + Co)n
in the Heisenberg group.

In the following, in section 4.1, we prove the CR matrix Li-Yau-Hamilton inequality for
the CR heat equation via methods developed as in [LY], [CKL1] and [CN]. In section 4.2, we
prove a CR Li-Yau gradient estimate in the standard (2n+ 1)-dimensional Heisenberg group.
Combining this with Theorem 4.1, we have the CR matrix Li-Yau-Hamilton inequality and
Hessian comparison property in the standard (2n + 1)-dimensional Heisenberg group H".
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4.1. CR Matrix Li-Yau-Hamilton Inequality. Let u(z,t) be the positive solution of the
CR heat equation (4.2). For the CR Li-Yau gradient estimate as in the paper [CKL1], we
observe that one of difficulties is to deal with CR Bochner formula ( 4.16) which involving
a term (JVyp, Vip,) that has no analogue in the Riemannian case. In order to overcome
this difficulty, we introduce a new scalar Harnack quantity G = t[|Vb<P|2 + ap, + tp?] with
¢ = Inu by adding an extra term t? to |Vb%0|2 + avp, which was appeared in Li-Yau estimate
([LY]). See section 4.2 for more details.

Now we want to find the right quantity for the CR matrix Li-Yau-Hamilton inequality. By
comparing the Harnack quantity in [CN] in case of Kéhler manifolds, we define the matrix
Harnack quantity

1 u U Ug ||
(46) NCYB = §(UCYB + UBQ) + 2?}1&3 —b — a’tThQB
by adding an extra term F' := —at%h(x@ in which positive constants a and b to be deter-

mined later (say a = 5;and b= ).
Definition 4.1. (i) ([GL]) Define the purely holomorphic Hessian operator P,s :
Popp = —2i(Aarp7)5
and the purely holomorphic Poisson operator () :
Qp = h*?(Popp) = ~2i(Aayps)a

for any smooth function ¢. Note that P,z = 0 = Q¢ for any smooth function ¢ if Aqs =0
on M.

Lemma 4.1. Let u(z,t) be the positive solution of the CR heat equation (4.2). Then
%(UQB + ug,) satisfies the following :

1[0
<— - Ab> (tap + Uga) = 2Rassptt5 — Rastisp — Roptias + Cap,

2\ ot
where . .
CaB = 1 (.Angu,—y - A%’(guv) haB —i—.l (A,Y(;U;/g — Aﬁgu(g,y) haB
+in (Aygtiay — Aaytisg) +in (Agp 0ty — Ay i)
= —(ReQu)h,z +n(ReP,zu).

Note that trC.z = haBC’aB = 0. In particular we have C;7 =0 for n = 1. In addition if the
positive solution u satisfies P,gu = 0 which is the case when the torsion is vanishing, then
u,p satisfies the following CR Lichnerowicz-Laplacian heat equation ([CCF]) :

<% — Ab> Uop = 2R 555005 — Rastsp — Rspliag.
Proof. Note that

(% — D) (U“; + ux#)

= % (“ux +usy ) — By (u,; +us,
= [(Apu) - = Apu o]+ [(Apu)s, — Apus,).
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(i) We first compute [(Abu)ux — Apu ;] + By definition, we have
(47) (Abu)uj\ = (Ua& + uéxa)uf\ = Ugapr + UsapX
Compute

ua&,ux = (ua,u@ - Zhu&uao - Rai)u&up)j\
Uapar — Zhu&uaoi - Ra;‘;pa,j\up - Ra,buaupX

Upaar — ihu&uaoi - Rap,ua,j\up - Rap,uaupX
- u,uaj@ +1 (uaahuaAE';\ - uaathAE'&)
+ (TLUMUA&;\ - uuaha/_\AE&)
ihuauaoi Rap,ua NUp — Rap,uaupj\
(48) = ( Upxa + Zha)\uuﬂ + Rypa/\up)
i (tnahy, Agy — tsahyn Ase)
+i (Nuye Ay — u,wha)\Am)
_ihuauaox - Rap,ua,iup - Raﬁu@up;\
= Upraa + Z'haj\u,uO& - ih,uaua()j\
—Rapua ity — Rappatys + Ry

axalp T R pa)\upd
41 (uaahuaA- — Ugey u/\AU ) 44

nu,w — Uyoho3Asa) -
Here we have use commutation relations

u,ua&j\ = u,uozj@ +1 (uaah,uaAﬁX - uaahMS\Aﬁa)
+1 (Nuue Asx — UpohoxAsa)

and
Upara — (u,uj\a + Zhaj\u,uo + Rupaﬂup)a
= Uyzaa T Naxtpoa + Bzaxatly + Rupaxtipa-
Similiar, we have
uaau;\ = u,uj\&a + Zhu&AS\ﬁ,aup + Zhu&AS\@aupa
—Zh‘u}\Aap’aup — Zhuj\A@pupa
(4.9) —i (nAuup)5 + 1 (hapAapup)s

+Rupa5\up& + Rapaiu’uﬁ
_Zh,u&UOaf\ + Zhaf\u,uao

It follow from (4.7), (4.8) and (4.9) that

(Abu) —Apuyy = 2R 505Upa — Rzt — Rpuu,y
+ .(Ruﬁai,@ - Raﬁud,/—\) Up .
(4.10) Hhawum ihpuatlaos — hpuatigas + 1PaxUuao

+i (Uoahp, Ass — Usahy5Asa) + 1 (NUue Asx — Uuoha3Asa)
+thAAp’aup —|— ihuaA;\[—mupa - ihu;\A@p,auP
—ih,xAaptpa — 1 (NALup)5 + i (hapAaptip)
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By CR Bianchi identity ([L1]) and commutation relation, the third line of RHS in (4.10)
becomes
Rypara = Bapua,
= Roppsa = Bopua,
= Rp'aj\u,d - Rﬁa&_,uj\ . _
= _ZA,bC_t,ahuj\ — ZAZ)&“uhaj\ + ZAﬁj\,ah,ud -+ ZA[)X‘uha&
= —Z.Ap@’ahpj\ — Z'Apd,ph/aj\ + iAﬁj\,ah,U‘a + inA
and the fourth line becomes

> >l

PA.p

thoxtpoa — thuatagx — thuatioas + thaxtuao
= 1Uy,05 — WUyox — Wopx T 30
= 1,50 — 1Ugyx
= —Z'Aupg\up — iA“pup;\ — @'Ap;\uup — iAp;wup
(ii) We compute [(Apu)s, — Ayuy,] by take the conjugate of [(Abu)HX — Apu ;] and then
switch index A and p.
Now we arrange all the torsion terms together in (i) and (ii), then we are done. O

Note that it follows from commutation relation ([CKL1]) that
Aytig = (By)y + 2 | (Aastia)s + (Azztia)s]

Hence
[Ay, T]u=—2TmQu.
Proof of Theorem 4.1 :

Proof. As in [H2], it suffices to prove that the Hermitian symmetric (1, 1)-tensor

1 U UaUB
NOéB = §(u065 + uBa) + 2?ha5 —-b " — FhaB >0
for t > 0 and some constant a and b to be determined. Here
2
F = at‘uo‘
U

Now we first compute

(G20 = g5 - o (=)

= A ugug + o (Apu),u

8
+Eu, (Apu)z — Ay (Tuqup)

Q

and
_A
Ay (fuauz) = (Z@ 4 Husuy) uaug + 1A (uaup)
—azty (Uatig) — o3ty (Uatip) -
Hence

o7B 2
(% — Ab) Loty _ —%umum — %ua?uﬁv — u—zg, Vul” uqug
Tty (“a“3)7 + rtuy (uaug -

2 (A, = B () + (B0 = 2 1))
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Therefore by using Lemma 4.1, we have

(5 — D) N
= QR(W(;BU Raaugﬁ R,puas + Cup
+b( UayUpy + UOWUB'Y % |Vu|2 UaUlg — u2_2u”/ (UCWUB + UCYUB’Y))
_bu22 Uy (ucwuﬁ + ua“ﬁv) 2zhag
=L (), = Ay () ug — b ((Ayw); = Ay (u5) ) u
— (2 — Ay) Fhp.

Observe that
(4 11)
L (Av), — Ay ()
qf - (Uyga + Usya = Uary = Uayy) Up . . .
(Unyay — Thaztiyo — Ryatly 4 Uazy — thaytioy — iNAaytly + ihsa Ayl — Uayy — Uayy) Up
= (—tuaoup — Ryquup — ilgaUp — inAayUytp + iAaguauB)

u
o _l _ .’UJOQUB o . l _
= — - Ryqu upg — 21— (n —2) i Agpupug.

u

Thus

(5 — D) Nog

= 2R ,753N5 — RagNop — Ry5Nas + Cup
+2bRa75ﬂu7u5 +b (n —2)i- Aapupuﬁ b (n —2) it Az utg
+21f (UO"Y uD‘uu'Y) (UB’_Y - ’Yuﬁ)
—I—Zb( UayUyg — 73Uy UasUG — 73 UyUal %3)
+2bizSuqug — 2bz 1,5 —( Ab) Fh,z
+b | Va|® 252 — haﬁ
+2bi “0"“5 — 2bi "Oﬂ““.

Note that we can rewrite N5 as following :

U U

1. u
Nog = Up — §Zu0ha3 + 2;]1&3 —b — Fhgp.

u

Then we replace w5 = Nos + % —23hay + b"auuﬁ + F'h,p into third and forth line of RHS
as above, we have

2b( ua'yu’Yﬁ uQu’Yua'Yuﬁ uz'U/»Y'U/a 76)
+ib=2uqup — zbuuaﬁ ( Ab) Fh,z
= 2N, Ng; — &N B+Sbt2ha6+ (b° — 20) |Vu|* *2
+ (8 — 8b2)1u°‘uﬁ+bih
PN, +b22“““”N Sy sy t5 Noy = bZusuaN, 5
4bFN o3 2”F2haﬁ +4 (b2 — b) Tovp
—opd d Fhap — ( — Ay) Fhyp.

uaug
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Finally one obtains
(57 = Av) Naj
=2R.553N15 — RaoNop — RypNas + Cop
+2bR 552 + b (0 — Q)JEAQPU/—,UB —b(n—2)itAzuug
+2 (“av %) (ugy — Wuﬁ) + 2 NoyNos — FNag
(4.12) 62 uBuWN 5+ b2 2““””]\[ 2u7u5NM QZuquNVB + %FNQB
—(2 Ab) Fhos + ;”F% 544 (02 —b) ot
+ (86— 2) %h,z + b5h,z
+(8b — 8b%) 12 4 (b3 20° + b) |Vul* “252
b5 4 obithets _ gpitaste

Note the first and second line of RHS are positive by curvature assumption. The third
and fourth line are nonnegative while we apply on null vector of N,
In the following we determined F' to make the rest terms nonnegative. First observe that

9 _ AU — 2u _ 2|Vuol® | 4uo(Vuo,Vu) _ o 2||Vul?
(615 Ab) u u [T’ A]U U + u? 2u0 u3
— _9 Vug _ wVu
- 1 3 )
u2 u?2

where we use the fact that [T, AJu = 2Im Qu = 0 which is always true if P,zu = 0. The last
four lines of (4.12) become

(5 —a(l+ 86)) uohaﬂ + 2at Z:&o _ uz% haB
(4.13) +2 <a2t2b %0 hog + 9 (" = )at\/‘%%uﬁ n G ;b) |v;\ uzuﬁ)

+(8b — 2) £hyp
+2bi =B — 2bz"°i“°‘ +8b(1—b) =

uau5

Note that the second line above is a complete square. To handle the last term, we have
following

2bi—"2 — 22" 4 8h (1 — b) ~-2

upuz

_ op Uu0a— "0t up o ugs—— Uaup
i = 2bi 7 f 207 -2 v 7 \gu:— 80 (1 —b) —
: _ uoa— =0 9 Yop— | 2. Y5
=0 <s NG szf) e~ e f)
ugua 7“‘0“7

_pe2 um;ﬂu OﬂfuT . ﬁ_g’lLau'U«ﬁ + 8b (1 — b) uauﬁ

By taking 2 = b , we have
2 uQ U ~ uov
UQga — Ugg—
2at || Yo _ uwoVull p oo pe2 u u
us ul ;,3 Vu vV .
uQUo _

Uga ——— Ugg—

= 2at ||V — wYVull p o — dat u =
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Then by applying (4.13) and (4.14)
2

’LL2 U U u
(3 —a(l+8b)) Lhas + 2at | T4 — 23| hyp
ud U uau b2—b 2 wl? Uatsz
+2 ( a®2b2h 5+2< ) g /piBists | (20 (9ul ugﬁ)

(8b— ) h’aﬁ

+2bi 28— 2bi =22 4 8p (1 — b) 2
> (5~ a(L+8) Bhy+ (85— 2) Bhoy + (86(1—b) - £) e
=0

when we choose a, b such that

—a(l+8h) = 0,

8—-2 = 0,
8h(1—b) -2 = 0

b
2

That is

1
a:ﬂ and b=

Hence from (4.12)

2 — Ay) Nyj
(8t b) ap
> 2Ra,7§’N 5 — Rac_fNaﬂ RUBNCW + Rm(wuwué

(4.15) +21“u (;LOW ) (ugy — =57 + 2uN 5Ngy — $Nap
+‘ . 7NOW + luz%NvB 211@“7“6]\[&7 212“v“aN”//3 + lFN

+C’aﬁ + 2 (n — 2) i[Aapupus — Agyupuag).

which is nonnegative while we apply on null vector of N3 we assume nonnegative bisectional
curvature, nonnegative bi-torsion tensor and nonnegative C,5 as well. U

4.2. The CR Gradient Estimate and Harnack inequality in Heisenberg Groups.
In this section, by using the method of CR Li-Yau gradient estimate ([LY], [CKL1]) and
CR Bochner formula (4.16), we derive a CR gradient estimate and CR Harnack inequality
for the positive solution of the CR heat equation (4.2) in (2n + 1)-dimensional Heisenberg
group.

We first recall the following CR version of Bochner formula in a complete pseudohermitian
(2n + 1)-manifold.

Lemma 4.2. ([Gr]) For a smooth real-valued function ¢,

(4.16) 30 [Vopl® = [(VT)20l” + (Vip, Vilog) + 2 (I Vo, Vo)
: +[2Ric — (n —2)Tor] (Vep)e» (Vep)e) -

Here (Vyp)c = ¢*Z, is the corresponding complex (1,0)-vector of V.
Since

(V)20 =230, 5(10asl* +10451%) 2 2, [0aal” 2 2, (Be)” + 505
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and for any v > 0,
2 (JV, Vi) < 2| Vool [Vopol < 07" [Vopl” + 0 Vil

Therefore, for a real-valued function ¢ and any v > 0, we have the following Bochner
inequality

N Voel? > & (Do) + 203 + (Vip, Vi Asp) — v | Vi |
+[2Ric — (n —2)Tor — 20 ((Vo)e , (Vo)) -

Now let u(zx,t) be a positive solution of the CR heat equation (4.2) and denote
o (x,t) =Inu(z,1t).

(4.17)

Then ¢ (x,t) satisfies

(4.18) (Ap— 2)p = — |Vl
and from Lemma 3.5 in [CKLI]
(4.19) (A = )00 = =2 Vs, Vipg) +2V (9)

where the operator V' is defined by
V (9) = (Aas@?),* +(A50"), T +Aapp™” + A50%¢".
Therefore, if A,s = 0 then one obtains V' (¢) = 0.

Lemma 4.3. Let (H", J,0) be the standard (2n+1)-dimensional Heisenberg group. If u(z,t)
is a positive solution of (4.2) on H™ x [0,00). Let ¢ (x,t) = Inu(x,t), then for any given
a < —1, the function

G (2,t) == t]| Vil (2, ) + ap, (2,1) + te (z,1)]
satisfies the inequality
(A — )G
(4.20) > —2(Vyp, V@) =t 1G + a 20 171G + a2 Yo + 1)%t | Ve
—2n7'a 2 [(a+ 1) [Vol” + t3] G + 2[a7?n ! (o + 1)i2pf — 1] [Vl
Proof. Note that
G = t|Vapl” + ap, +tig) = tl(a+ 1) | Vapl” + alyp + 1)),
By taking v = ¢ into the inequality (4.17), we compute
NG A [Vop|® + alpp, + tA02]

> 2 (App)? + nd + 2 (Vip, Vi Apep) )
+ alpip; + 2t Appy — 267 [Vigp| 7],

and it follows from (4.19) that

5G = t7IG + 12 (a4 1) (Vip, Vip,) + alyp, + 0F + 2t0000,)
= t71G + 2 (a+ 1) (Vip, Vip,) + alyp, + o3
+ 20, Apg + 2t (Vip, Viagl)],
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Thus, we have
(4.21) (Ap — 2)G > =2(Vyp, ViG) — t71G + tn ! (Ayp)? — 267 [ Vaep| 7],
where we used
(Voo ViG) = t[(a + 1) (Vip, Vispy) + £ (Vip, Vi) — (Vip, Vslpip)].

However, since

App = — Vol 4+ o, = t71G — (o + 1) | Vie|” — td],
thus

(App)” > a?7°G = 207271 Gl(a + 1) [Vip|” + t]]

+a2[(a+ 1) |Vyp|" + 2(a + 1)t Vo]
The Lemma follows from substituting this inequality into (4.21). O
Proof of Theorem 4.3:

Proof. Let Byg be a ball of radius 2R center at O € H" with R > 1. Let ¢ € C3°(R) be
a cut-off function such that 0 <1 < 1, ¢(t) =1 for t € [0,1], ¥(t) = 0 for t > 2. We also
require

(4.22) W' <0, ¢ > -0y, and B <Gy
where C; and Cy are positive constants. Denote by d.(x) be the Carnot-Carathéodory
distance from O to x in H". Then we define n(z) = v (%) . It is clear that suppn C Bag
and n|p, = 1. For

G = t{|Voel” + apy + tef)]

we consider the function nG with support on Byg x (0, T]. Let (xo,t9) € Bar % (0, T] be the
maximum point of nG. Note that at (z¢,%y) we have the following properties

(4.23) Vio(nG) = GVyn +nV,G = 0,
(4.24) Ap(nG) <0,

and

(4.25) 2 (nG) =nG; > 0.

In the sequel, all computations will be at the point (zg,%) and we may assume that
(UG)(%a tO) >0,

otherwise (nG)(zo,to) < 0, and the Theorem is true. By (4.23), V,G = —G'V,n/n, and from

(4.24)

Ay(nG) = GAwn + nAG + 2(Vin, ViG)

GAbT] + nAbG — 27771G |Vb77|2 .

o
v

(4.26)

By (4.22), we have
Vonl® _ [ PIVede _ [P -
n - PYR? — YR2 =

Ye

b
and

”Vdcz A de " / C
Ay = CIEE 4 l0de — 00 4 WA G, > -G — YOA,
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By the CR sublaplacian comparison property in [CTW]
(4.27) Ayd, < &,

for some constant C', then

Substituting these into (4.26), applying the inequality (4.20) and it follows from (4.33)
that we have the estimate
t%@g S 057
for some constant C5 > 0. All these imply

0 Ay(nG) > —C3R™'G — 205R'G + nAG
—~CyR7'G + 1[Gy — 2(Vyp, VuG) — t5*G + n~ta %t ' G?
~2qn o [(a+ 1) [Vypl” + topg) G+ n > (a+ 1)t | Vool
+2n[n " (a +1)Cs — 1] [Vl
where 04 = 03 + 202

Since nGy = (nG), > 0, n(Vip, VieG) = G(Vip, Vyn), then by the following inequality

n~ta" o+ 1% |[Ve|* + 2 ta 2 (a 4+ 1)C5 — 1] | V|
> =2t [n'a2CE + nat(a+ 1) 77,

(AR

the above inequality can be reduced as
0 > nta?t;'nG? — (C4R™Y +t5'n)G — 2G{Vyp, Vi)

—2n~ o 2[(a + 1) | Vye|® + togllnG
—omts Lo 202 + na?(a + 1) 7).

Then multiplying by 7to, since 0 < n < 1 and (Vyp, Vin) < |Vip| |Vin|, we get

0 > nla?(nG)? — (C4R 'ty + 1)nG — 2ty |[Vye| [Ven| nG
(4.28) —2n~a " ntol(a + 1) |Vep|® + togdlnG
—2[n"ta 2C% + na®(a+1)72.

Observe that there exists a constant Cg > 0 such that
—2n a2 (a + 1)1 |Vye|? — 2/CR Y2 |Vyp| > Csa®(a+1)"1R2.
Hence combining this with (4.28) and using t2¢2 < C5 again, we conclude that

0 > nta2(nG)* + [Crtoa*(a+1)'R™ — 1 — 2n~ta™2CsnG
—2[nta"2C2 + na*(a+1)7?

for some constant C7 > 0. This implies that at the maximum point (zg, to)
nG < Cga?[Cs — (e + 1) (1 + a*tgR™)]
for some constant Cg > 0. In particular since ¢ty < T, when restricted on Bag X {T} we have
Vapl” + ag, + Tf < Csa’((Cs = (a+ 1) )T = a(a + 1) 'R,
Theorem 4.3 follows by letting ¢t = T and then taking R — oo. O
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Corollary 4.7. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(z,t) is the positive solution of the CR heat equation (4.2) on H" x [0,00), we have the
Harnack inequality

c
u(x1,t1) t de(z1,22)?
(4.29) wnh) < (f) exp( (r122) )
for any x1,x9 in H" and 0 < t; < ty < oo, where d.(xq,x2) is the Carnot-Carathéodory
distance between x1 and xs.

Proof. Let v be a horizontal curve with v(¢1) = x; and y(t2) = x2. We define 7 : [t1,t2] —

H" x [tl,tg] by
n(t) = (v(1),1).
Clearly, n(t1) = (x1,t1) and n(tz) = (z2,ts). Integrating along 7, we get

(4.30) Inu(zy,t1) — Inu(zg, o) = — L? 4 In udt
' = [P]—(3,V,(Inw)) — (Inw),)dt.

t1

On the other hand, Theorem 4.3 implies that
—(Inw); < At '+ a7 Vy(Inu)|

where A = —Ca[C; — (o + 1)7!] for some constant C; depending only on n. Hence (4.30)
becomes

In 2283 <[5 [9,(1n) |+ = [V w)+ At~

Using the inequality
o™ [Vp(Inw)|” + [ [Vo(lnw)| < =515

and choosing
de (Il 7332)

vl = =
we conclude that

u(.’L’l,tl) @ dc($1:$2)2 14
In u(wa,ta) < 4 ot +Aln i

By taking exponential of both sides, we have
(o) < <t2>Cla[Cl(a+1)—1]

u(r2,t2) = \t1

ade(x1,z )2
xp (_ 4(t21—t12) )

The result follows by choosing @ = —2. OJ

As a consequence of Corollary 4.7 and [CY], we have the following upper bound estimate
for the heat kernel of (4.2).

Corollary 4.8. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group and
H(z,y,t) be the heat kernel of (4.2) on M x [0,00). Then for some constant 6 > 1 and
0<e<1, H(z,y,t) satisfies the estimate

2

(By(\/%)) exp <_%>

N[

(4.31) H(z,y,1) < C(e)'V ™2 (B.(VE)V™

with C(€) — 0o as € — 0.
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Once we have the upper bound estimate for the heat kernel and the sub-laplacian com-
parison property (4.27). Then by applying the arguments of Li-Tam as in [LT] or [Li], we
have the following mean value inequality.

Corollary 4.9. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group and g
be subsolution of the CR heat equation such that

(28 st <0

Then for some constant C' depend on 0, 7,1, such that0 <6 <1, 0<7<T,0<n< %, the
following inequality holds for any p > 2v/T,

T
(4.32) sup g < C’/ / g (y,s) dyds.
Bp((1=8)p)x[7,T] (1=m7 J Byp(p)

4.3. Complete noncompact case. In [CN], Cao and Ni derived matrix Harnack estimates
for the positive solution of the heat equation on complete noncompact Kihler manifolds
of nonnegative bisectional curvature by using the key estimate (4.34) which is obtained
from the result of Li-Yau heat kernel estimate ([LY]). For a general complete noncompact
pseudohermitian manifold, we do not have Li-Yau type heat kernel estimates. However,
we do have the CR corresponding result of Li-Yau heat kernel on Heisenberg groups as in
Corollary 4.8. Comparing the method of Cao-Ni, we should point out that we also need the
extra ug-growth property (4.35) that has no analogue in Kéhler manifolds. First we need a
lemma [CFTW].

Lemma 4.4. Let hy(z,t) be the heat kernel on H™ x [0,00), and M = ijm where Cy ,Cs
constant depend on n, we have

(4.33) | (2)" h(2,t)] < Mhy(z,1) .

Note that % is the derivative along the T direction of H™ and s is a parameter of time.

Lemma 4.5. Let (H",J,0) be the standard (2n + 1)-dimensional Heisenberg group. If
u(z,t) is the positive solution of the CR heat equation (4.2) on H" x [0,00).. We have for
0<6<t<2—0, there exists a constant b > 0 (might depends on §) such that

(4.34) u(z,t) < exp(b (r® (z) + 1))
and
(4.35) uo| (z,t) < exp(b (r® (z) + 1)).

Proof. Let o € M be a fixed point. Since our focus here is to obtain an upper bound on u
for positive time, we may assume that u(z,t) is defined on M X [0, 2]. By Harnack inequality
in Corollary 4.7, we have, for 0 < t < 2

u(z,t) < t%u(o, 2) exp(ar? (z)).
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Here a is a constant and 72 (z) is the Carnot-Carathéodory distance d.(o, z). In particular,
for 0 < § <t <2 — 4, there exists a constant b > 0 such that

u(z,t) < exp(b(r? (z) + 1)).

But from (4.33) as in next section, we have

o, )] < ule, 1)

Hence we also have
|uo| (z,t) < exp(b (r* (z) + 1)).
O

Lemma 4.6. Let M be a complete pseudohermitian (2n + 1)-manifold with nonnegative
bisectional curvature and nonnegative bi-torsion tensor. Let u be the positive solution of the

CR heat equation (4.2). Then

0 1 2
(57— 20) 190" < =2 uaall = 5 s+ w3l + 4195 Cao) 193]

In addition if the positive solution u satisfies the purely holomorphic Hessian operator P,zu =
0. we have

0
(57— %) s + wsal” < 0
Proof. We compute

(% — Ab) HVbu||2 = (% — Ab) QUQ'LL@

2 (Apu), ta + 2 (Apu) 5t — (2uatia) g5 — (2uatia)zg

2 (QUBBQ - mu()a) Ug + conj. — (ZUQUQ)BB — conj

dunppua — 4ih,zusota — 4Rpa s — 2iNUgaUa

+ugzUa + 4ihagugotia — 4R paUpla + 2iNUga U,

— (2unppla + 2Uaplsp + 2UagUas + 2Ualsgp

— (2ugppUa + 2Ug5Uap + 2Uaslag + 2UaUazs

= —4dih,gupota — 4RpaUpUa — 2iNUgaUG
+4ihagugota — 4RpaUptia + 2inUogla — 4Uaplisp — 4UszUas
+2ug (inuag + Ropt),) — 2uq (inuag — Rapus)

= —duagusz — Yugplas — ARp0UUG
—4iugatia + 4itgata + 20 (n — 2) Azpupua — 2i (n — 2) Aqgupus.

By curvature assumptions, we have

0 1 2
(57— ) 1l < =2 gl = 5 a3 + sl + 41193 () 11
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and

(5~ 80 g |
=2 ((5 — ) (uap + upa)) (tap + usa) + conj
—2 ( Ugp + U,@a)A/ (uap + uga%) + conj
E(% - Ab) (uaB + uBa)) (u&ﬁ + UB@) + CO’I’Lj
2R0@5Bu75 - Raguéﬁ - R(SB“O{S + OaB) (Ua,ﬁ + Uﬁ@) + conj
2R3 (U5 + Usy) — Rag (sp + ups) — Rop (Uas + usa) + Cap) (Uas + usa) + conj

I IA

IA I
.O/\[\D [\

Note that we have used [A,T]u = 0, C,5 = 0 and the following inequality :

(2Rus55 (w5 + us,) — Rus guw + ups) — Ryp (s + u50)) (uap + usa)
= 2R, 3parars — 2R2W (M)

= —R,ppa(Aa — As)
< 0.

Here we denote 5 + us, = A, ( since u.5 + 1z, is symmetric and then diagonalized). [

Combining Lemma 4.5 and Lemma 4.6, we are able to obtain the following.

Lemma 4.7. Let (H", J,0) be the standard (2n+1)-dimensional Heisenberg group. If u(z,t)
is the positive solution of the CR heat equation (4.2) on H™ x [0,00) . There exists a constant
b > 0, depending only on b such that

T
5 2
L[ o (<b2) (90l 4 19l s+ s + 5| e < .
20 JM

Proof. We multiply ¢ on both sides of the following equation
(5~ ) w2 < 2wl
where ¢ be a cut-off function such that ¢ = 0 for d.(z,p) > 2R, ¢t < ¢, and ¢ = 1 as
de(z,p) <R, t>26 and |[V¢| < &. Then

fo fWHVUII ¢ dudt
< o o (2 = 2)02)

(4.36) =[5 fM Au ¢ dudt+ Joy v (2,0)¢” (2,0) dp
— fM ¢ (2. T)dp+ [, [o,u (2.t) (6%), dudt
< T fM ( ?), dpdt — [} [,, 26 (Vu2, V), dudt.

By Young’s inequality we have

/ /2¢<vu Vo) g dudt < / / | Vu|? gbdudt—l—S/ / u? || V|| dpdt.
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Then (4.36) becomes

/ / [Vl ¢dudt<2/ / BVl + (¢ ) ) dpdt.

That is, there exist a positive constant C' independent of R such that

T T
/ / | Vul]® dudt < C / / uldpdt.
26 JB,(R) § JB,(2R)

By choosing R = 2™ and b; > 4b, thus
T —byr2 2
fza fMe h HVQUHTdet ,
S Zn:l e_b1(2 ) »QS ‘{Z:BP(2TL+1)\BP(2") ||VU/|| d/”’dt
< CZOO e b1(2 2 fa fB (2”“) wdpudt
< Cz —bl(zn b22n+2 f5 fB o) _br2u2d,udt
4’[2
< Cf5 fM b u?dpdt - >y ( 4b>

< 00,

(4.37)

where the last inequality we use the growth rate of u as in Lemma 4.5. That is

T
(4.38) / / 7 | Vul]? dudt < oo.
20 JM
Again by [A, T|u = 0, we have

0
(a — Ab) ug < =2 \|Vu0||2.

By Lemma 4.5 and follow the proof above, for some positive constant by > 0, the following
holds

T
(4.39) / / e || Ve |? dpdt < oo.
s Jum

From Lemma 4.6 and [A, T]u = 0, we have
1100 (5= 80 90l + 18 4) < =2l = 5 s + -
We multiply a test function ¢* and integrate as in (4.36), we have
fo ffy[ (2 luagl® + 3 3 |[tan +uf3aH ) dpuct
< I (3 = 8) (19l + 52

= fo f (HVWH +ud + u?) (¢%).dp
= 2609 (Wl 3 +42) Vo), dudt.

By Young’s inequality again, we obtain

Jo Sy Nuasll? +Hua@+u5aH H2dudt o
< C [y (IVuol® + [Vul® +ud +u?) (V6] + (¢%),) du.
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Now the same argument as in (4.37), for some positive constant b3 > 0, we have

T
(4.41) / / exp (—bsr?) <||ua5|\2 + ||uag + ugaHz) dudt < .
25 JM

Choose b = max {by, by, b3} , and combine (4.39), (4.38) and (4.41), we are done. O

The result of Lemma 4.7 can be improved to the following pointwise estimates by the
mean valued inequality.

Lemma 4.8. Let (H", J,0) be the standard (2n+1)-dimensional Heisenberg group. If u(z,t)
is the positive solution of the CR heat equation (4.2) on H" x [0,00) . Fort > 0, there exists
b > 0 such that

Voul? r,t) < exp b(r2+1
(4.42) Ve H2( ) ~( )
|tap + ugal||” (z.1) < exp (b(r?+1)
Proof. We denote ® = ||V,u||* +u2+u?. It follows from (4.40) that ® is a subsolution of the
CR heat equation. We multiple factor e~b(r7+1)
(4.32), we have

on both sides of the mean value inequality
(2

e () SUPg, ((1-8)p)x[r1) L (25 1)

—b(p?+1) T
< Ce T<p ) f(l—n)T fsz(p) D (y,s) dyds
—b(r 1
S O jl(l—r])’r pr(p) € ( W)+ )@ <y7 S) dde
< 00,

where r (y) is the Carnot-Carathéodory distance between p and y. The last inequality is

followed from Lemma 4.5 and Lemma 4.7. Now we substitute p = =1 (x) , we have for any

1-5
€ B,(5r), r<t<T,
5 (@.1) < ) (@),
The other inequality in (4.42) can be obtained similarly. O

Lemma 4.9. Let (H", J,0) be the standard (2n + 1)-dimensional Heisenberg group and g be
a smooth function on H™ such that

exp (kl (r2 + 1)) < p <exp (kg (7"2 + 1))
for some constant ko > ki > 0, then there exists T,, > 0 depending only on ks such that the
Cauchy problem
{ (5 —As)g=0

u(z,0) =¢
has a solution g on H™ x [0,T]. Moreover, there exist constants C1, Cy > 0 such that
k
C1 exp (er2) < g(x,t) < Cyexp (3k2r2)

on H" x [0,T,,] .
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Proof. Similar argument as in Lemma 1.1 in [NT4], where the proof only using the heat

kernel estimate (4.31) and the sub-laplacian comparison property (4.27). O

Proof of Theorem 4.5 :

Proof. It follows from Lemma 4.9 with ¢ = estg for t > ¢, we have
0 K
Z A _
(875 b) ¢ =50

¢ (x,t) > Crexp (213 (r* + 1))

for a positive constant C'; and a positive constant x which to be determined later.
Let N,5 be the matrix Harnack quantity in (4.6) We consider the following (1, 1)-tensor

and

(4.43) NQB = tZNaB + eQhyp.

We only need to prove that N, op > 0 for any ¢ > 0. We shall prove this by contradiction.
Suppose it is not true, then by the growth rate of ¢ and the fact that N,3 > 0 at t = 0,
there exists a first time ¢y, and by Lemma 4.8, a point zo € H" and a unit vector v at xg
such that N op (7o, to) v @8 = 0. Now we choose choose a normal coordinate around z, and
extend v to a local unit vector field near xy. Then at zg

Ab< aﬁvv> Ab< )Uvﬁ

Since NQBU(XUB > 0 for all (x,t) with t <t and x close to xq, we see that at (xg, o),

) _
(444) 0> (a— — Ab> ( aﬁv 18)
On the other hand, it follows from (4.15) we have, at (zo, to)
(% Ab) Nagvavﬂ
= (( — Ay) N, 5) vl
> 12 (2R0553N,5 — RaoNyg — RogNas + Cap) v°0°
+t? (Rm — Tor) (
+1? 3= Noy Ngzv*0P
+¢2 (Uﬁu7 NCw + u“u”N — 5 QUWUBNM 211L2 uﬁuaN B) veP

8uZ ‘'8 v
u2
+t2FN 5007 + 56 |u|?.

(4.45) var!

Since NQB (20, o) v = 0, it follows from (4.43) that at (o, to)

1 7 F
t?—FN 00" = ——¢e¢ v]?.
u u
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Now £ = i(”ﬁf, by using (4.33), we have

1
12 —FNQBUQUB > —
u

+] Q

C
eo [u* > =<0 Juf°
for some constant C. Hence
1 - C
t*—F N, 500" + 5§¢ lv)* > (k — g)sgb > >0
U

if we choose
.
)
That is (2 — Ay) NQBU%B > 0. This contradicts to (4.44).
This shows that Nag >0forall0 <éd <t<2-9. Taking e — 0 and ) — 0 and repeating

the argument to the later time. Then we are done. 0

Proof of Corollary 4.6 :

Proof. By applying Theorem 4.5 to the heat kernel H(x,y,t) with V = —VII}H , we have

_t[(log H(ZL‘, Y, t))aE + (log H(‘Ta Y, t))ﬁa] - gt[(log H(ZL’, Y, t))a(log H(Ia Y, t))ﬁ] < 4hag'

But —tlog H(z,0,t) — r?*(x) as t — 0. Therefore

—t[(log H(, 0,t)) 5 + (log H(z,0,1))5,] — 7[(r*(2))s5 + (r*(2))5a)

in the sense of distribution. On the other hand, one can have
3
§t]Vb(log H(.I', 0, t)‘z < C[)

for some constant Cj in a Heisenberg group H" due to the dilation §, in H" as in [JS,
Theorem 1.]. Therefore

[(r*(2))a5 + (r*(2))50] < (16 + Co)h,_ ().

5. Linear Trace Li-Yau-Hamilton inequality

In this part, one of our main goals is to prove the Li-Yau-Hamilton type estimate for posi-
tive solutions of the CR Lichnerowicz-Laplacian heat equation. In the seminal paper [LY], P.
Li and S.-T. Yau established the parabolic Li-Yau gradient estimate and Harnack inequality
for positive solutions of the heat equation on Riemannian manifolds with nonnegative Ricci
curvature. Later, Hamilton ([H1]) proved the matrix Harnack inequality for solutions to the
Ricci flow when the curvature operator is nonnegative which is called the “Li-Yau-Hamilton”
type estimates. Since then, there are many additional works in this direction which cover
various different geometric evolution equations such as the mean curvature flow ([H2]), the
Kaehler-Ricci flow ([Cal), the Yamabe flow ([C]), etc.
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In the case of Kahler geometry, it is well-known that Kéhler-Ricci curvature (1, 1)-tensor
of a Kéhler-Ricci flow solution satisfies a Lichnerowicz-Laplacian heat equation. In general,
the Hodge-Laplacian heat equation on symmetric (p, p)-tensors is a geometrically interesting
system and has been extensively studied since the original works of Hodge and Kodaira ( [Mo]
and references therein). For instances, we refer to the Lichnerowicz-Laplacian heat equation
on (1,1)-tensors as in [NT1] and the Hodge-Laplacian heat equation on (p, p)-tensors as in
[NN]. In the following we discuss the case of CR geometry.

Let (M, J,0) be a strictly pseudoconvex CR (2n+1)-manifold. In our recent paper ([CCT]),
we consider the CR Hodge-Laplacian

1 _
Ay = —§(Db +00)

for Kohn-Rossi Laplacian [J,. For any (1,1)-form n(z,t) = n,50" A 6°, we study the CR
Hodge-Laplacian heat equation on M x [0, 7))

(5.1) % (x,t) = 4Agn(x,t)

which connects to the existence problem of pseudo-Einstein CR (2n + 1)-manifolds with
n > 2. It follows from the CR Bochner-Weitzenbock Formula (5.12) that the CR parabolic
equation (5.1) is equivalent to the CR analogue of Lichnerowicz-Laplacian heat equation :

0
(5.2) anag =4 [Abnaﬁ’ + 2Raw677w - (Rvﬁna”y + RO@U’YB)} )

In this chapter, one of the main results is to prove such LYH type estimates for this
system (5.2). From now on, we assume that 7,3(7,t) is a symmetric (1,1)-tensor on a
strictly pseudoconvex CR (2n + 1)-manifold satisfying the CR Lichnerowicz-Laplacian heat
equation (5.2).

Define the Harnack quadratic by
(5.3)

1 H
Z@wmvwzm{50&mn@+mwmw)+wwmga+wwmu@+wwmﬁ +—

for any vector field V € T'° (M), H = hO‘BnaB and k; to be determined later. Moreover,
Nap,o is denoted the component of covariant derivative of the tensor n with Reeb vector field
T.

With the notation above, the following is the CR analogue of the linear trace Li-Yau-
Hamilton inequality for the CR Lichnerowicz-Laplacian heat equation.

Theorem 5.1. Let (M, J,0) be a closed strictly pseudoconvex CR (2n+1)-manifold with non-
negative bisectional curvature and vanishing torsion. Let 1,5 (x,t) be a nonnegative symmet-
ric (1,1)-tensor satisfying the CR Lichnerowicz-Laplacian heat equation (5.2) on M x [0,T)
and 1,50 (7,0) = 0 at t = 0. In additional if M is complete noncompact, we assume that
there exists a constant a > 0 such that

T
(5.4) [ e P dua: < o
) M
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and

T
(5.5) [ [ e 19 duar < .
4 M

where 1 (x) is the Carnot-Carathéodory distance from a fized point o and any § > 0. Then
Z (x,t) 20,
for 0 < ky <8.

Remark 5.1. 1. The assumption for the initial condition 1,5, (x,0) = 0 is valid when
we apply Theorem 5.1 to the CR Lichnerowicz-Laplacian heat equation coupled with the CR
Yamabe flow as in Corollary 5.4. We refer to Remark 5.3 for more details.

2. If M is complete noncompact, the extra requirement of (5.5) is needed to preserve
Vrn (z,t) = 0 and the extra requirement of (5.4) is needed in order to apply the mazimum
principle to the Harnack quantity 27 as in (5.37).

3. As in the paper of [N1] and [N2], a monotonicity derived from this sharp differential
estimate of Li-Yau-Hamilton type can be applied to n(x,t) to obtain dimension estimate for
the space of holomorphic functions of polynomial growth and an optimal gap theorem. Then
it 1s natural to ask whether or not the CR analogue of corresponding estimates still hold. We
shall study its applications of this Li- Yau-Hamilton type estimate in this direction in a forth
cOming paper.

In our recent paper ([CKW]), we study the torsion flow in a closed pseudohermitian 3-
manifold which is the CR analogue of the Hamilton Ricci flow. More precisely, let 0(t) be
a family of smooth contact forms and J(t) be a family of CR structures on (M, Jy, ) with
J(0) = Jo and 0(0) = . We consider the following torsion flow :

9
J = 2AJ9

A 05

(5.6) { 20 =—2R0.

on M x [0,T) with J(t) =i0' ® Z; —i0' ® Z; and Asy(t) = A10' @ Z1 + A0’ @ Z;. In
particular if the initial torsion is vanishing, it follows from Lemma 5.9 that the torsion flow
(5.6) is equivalent to the CR Yamabe flow (5.7) in a closed spherical CR 3-manifold.

In this section, we present its application of Theorem 5.1 to obtain the nonlinear version
of Harnack inequality for CR Lichnerowicz-Laplacian heat equation (5.2) coupled with the
following CR Yamabe flow :

(5.7) 5i0(6) = 2R (10 (1),
. .

0(0)=0, 0=e20

. .0
on (M,0) x [0,T) with /@99 = §. Here R(t) is the Tanaka-Webster scalar curvature
with respect to the contact form 6 (t).

In order to prove Theorem 5.3, we need one more key fact. By applying Hamilton’s general
method for obtaining Harnack inequalities ([H1], [C]) to the CR Yamabe flow, we have
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0
Theorem 5.2. Let (M,0) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka- Webster curvature and vanishing torsion. Then under the CR Yamabe flow (5.7)

OR 2R 3 )
: 4 = >
(5.8) T T 2(VR V) + SRV, 2 0

for any Ve T (M).

Now we are ready to state a Harnack type inequality for CR Lichnerowicz-Laplacian heat
equation (5.2) coupled with the CR Yamabe flow.

0
Theorem 5.3. Let (M, J,0) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka- Webster curvature and vanishing torsion. Let n,1 (z,t) be a positive symmetric (1,1)-
tensor satisfying the CR Lichnerowicz-Laplacian heat equation (5.2) coupled with the CR
Yamabe flow (5.7) on M x [0,T) and 1,74 =0 for all t. Then

Zr=Z+RH>0
on M x [0,T) for ky = 4. In particular, taking V =10

1
2Ab’l7ﬁ + (R + ;)H Z 0
and

0 1
- —MT ~)H >
(5.9) (%7711 +2(R+ t)H >0

with H = h''n 7.

As a consequence of Theorem 5.3 with n,; = R;7 = Rhy1, we have the following trace
Harnack inequality for the CR Yamabe flow (5.7) which turns out to be a special case of the
linear Harnack inequality for the CR Lichnerowicz-Laplacian heat equation (5.2) coupled
with the CR Yamabe flow (5.7) on a closed strictly pseudoconvex spherical CR 3-manifold.

0

Corollary 5.4. Let (M, J,0) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka- Webster curvature and vanishing torsion. Then we have the following trace Harnack
inequality for the CR Yamabe flow (5.7)

(5.10) %(tQR) >0

which is Theorem 5.2 by taking V = 0.

Note that B. Chow and R. Hamilton ([CH]), L. Ni and L.-F. Tam ([NT1]) proved the
similar nonlinear trace Li-Yau-Hamilton inequality for the Ricci flow and Kaehler Ricci flow,
respectively. However, we conjecture that the similar nonlinear trace Li-Yau-Hamilton (5.9)
holds as well for the torsion flow (5.6) in a closed pseudohermitian 3-manifold.

The rest of the thesis is organized as follows. In section 5.1, we derive the CR Bochner-
Weitzenbock type formula for (1,1)-tensors. Then it is natural to consider the CR Hodge-
Laplacian heat equation which is equivalent to the CR analogue of Lichnerowicz-Laplacian
heat equation as in the Ricci flow ([CH]) and the Kihler-Ricci flow ([NT1]). In section 5.2,
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we prove the linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-Laplacian heat
equation. In section 5.3, we prove a Harnack inequality for the CR Yamabe flow. Combining
this with Theorem 5.1, we have the nonlinear version of Li-Yau-Hamilton inequality for the
CR Lichnerowicz-Laplacian heat equation coupled with the CR Yamabe flow in a closed
strictly pseudoconvex spherical CR 3-manifold.

5.1. The CR Bochner-Weitzenbock Formula. In this section, we will derive the CR
analogue of Bochner-Weitzenbock Formula. Let ¢ be an (p, ¢)-form and denote by

O = Garasapiyip.5,00 N e NI ANOTNOT A NG,

For abbreviation, we denote as ¢ = ¢, BHA N , where A and B are multiple index A =
(a1, g, ..., ) and B = (61,52, ...,ﬁq) respectively. We define

(0, 0)

p— — _ A} @ p « p S B S
B p!q!%l---%ﬁl--ﬂq Porpgirdg e ROPP RO a0

R 1 e S
(or for simplicity) : = p|_q|¢A(a)Bl..,Bq@A(p)gl...,sqhﬁlal"'hﬁqéq‘

Theorem 5.5. Let ) =1

% (Db¢)AB

By O A AO NP A OP A NG we have

oqozg...oepB

(5.11) _¢A,B;ﬂ;ﬂ —2i(qg+1) Vrpap — ZZE f:1 Ral " quvbA(l:'y),B(k:ﬂ)
- Zgil,k#l RB:ﬁBZQbA,B(k:W;l:ﬂ) + ZZS R:YBkwA,B(k:ﬁ)'
Here
A = ooag..oy
All=7v) = aag..qi17Q11...0y
B = BlBQ"'Bq—i—l
B (k=p) = BlBQ'-'Bk—lﬂBk+1"-Bq+1-

In particular, taking p = 1= ¢+ 1 in (5.11), we have

1 . ; )
(§Db¢> = ~Yappu — 2iVobap — R, " Bl/}wi + R Bqﬁo@'
af

Now we have the following special CR Bochner-Weitzenbock formula for an (1, 1)-form 1.
Corollary 5.6. For an (1,1)-form ¢ =1 ,30" A GB, we have

1, ,- _ _
(5:12) (Ant)s = —5 (Ch 4 D) 8) 5 = Authgs + 2R, ™ i — B s = B by

We first derive the following Lemma.

Lemma 5.1. Let
= Guras.apiyf 5,0 N NP NOP NG N NG
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and
_ _ _ [63] Qp B1 Bz Bq 1
Y = VoragapisBan B0 A e AOT NG NG AN,
we have
(5.13l
Oy
p i1 o ap A gB1 A 0B 3
= (—1) Z:zzl (—1) vBi¢al~~~Oépl_31-~~Bi713i+1~--5q+19 A NP NGTENOP2 N LN G
and
el
.14 g+l ; _ _ B
(514 (qyp S (1) Volar a5y 5,0 A e O N OP A2 A A G,

i=1
Proof. (i) By taking exterior derivative, we obtain
dp = dyp + T¢ := 0y + pp + T

where 0y¢ is the (p + 1, g)-form part of dy¢ and Oy is the (p, ¢ + 1)-form part of dy¢ , T
is the form spanned by basis 0 A 64 A 05, In fact we have following

(08) a5y = (Dar gy, = i (X Xy X X5, )
Here
Ao (Xes vy Xy X3y X5 )
p
= Y ()X (Xal,...,XaH,XW,...,Xap,Xgl,...,XBqH)
=1

q+1
+1
+3 (=1t X5 6(Xars o Xags Xpyo oo Xa, 0 X, oo X5, )
j=1

+ Z<_1)i+j¢ ([XamXaj} 7Xal7 “'7Xap7XBl’ '“’XB‘Hl)
1<j

+ Z<_1)iﬂ¢ (|:XB-L7 XB;‘] ) Xal? A Xap’ XBl’ Y XBCI“)
1<j

+ Z <_1)p+i+j¢<|:Xai7XBj:| 7X041="'7Xf¥p’XB1"”’XBQ+1> '
i=l.p,j=1.q+1

Notice that the first term and third term is zero since ¢ evaluate on (¢ + 1) conjugate
tangent vector fields is zero. Moreover, since

[Xai, XBj] =T, Xy =T Xy i T,

J

the last term will be

24 _ _ _ _
& (—Féjain,Xal, o Xy Xaps oo Xoge Xo,oon X5, X5 ...,Xﬁw) .
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Hence

By <Xa1, s Xy, X5 XBqH)
g+l

j+1
— Z(_l)p+y+ X5 (X oo Xy X X, X5, 0 X5 )
3 (X o X, [ X5 X5, | Xy oo X X oo X, X X )

- Z (_1)p+z+j¢ (_F%jaiX% Xan X Xai—UXO‘i-‘rl’ T Xap’ XBN T Xijl’ XBJ'H’ e XBq+1>

= (—1)p Z(_l)j—i_lv@gb(XO‘U e Xa,,, XBI, e XBj—l’XBjJ,-l’ ey XBq.H)'

j=1

(i) The second formula (5.14) follows from the following computation. For du := 6 A (df)"

and Cpqg = W

ab¢ 7¢AB
= fM (gf 1/’> dp

= Cpyg fM (ab¢)A3152 Byt ¢A,51,32...,5q+1
= o [ (F1P X (17 Vo055 50 (Vamme 0P P05 ) di

= Gpag [ (= qH( D) GaB,. By BrsByn Vs (Wﬁplal--'h’)wé"“) dp
= ZqH ( Z+P f ¢A31 Bic1Big1--Bgia (hpiﬁivﬁiwAblﬁg...qu) hplBl"'hpi*lBi*lhp"“Bi“...hpr1+1B(1+1d/L
= CMZ"Jrl Z”’f(pABhunvnszpl Bs_ LB hplBl...h,quqd/,L
= Cpq (1) [ Gup 20 (-1) hunVﬁ¢Aﬁ1...Pi_1ﬂﬁi...,5thlBl"'hquqd:u'

hplﬁl ___hqurquJrl du

Proof of Theorem 5.5 :
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Proof. 1t follows from (5.14) that

and

<ab(ab¢))z461ﬁz Bat1
(_l)p Z (_1)171 VBZ (8;¢)AB1-~-Bi—1Bi+1"'Bq+1
=1

q+1 1 p j
p+l 1ZV6 ( q+1( 1) Zjﬁi (_1) “wAﬂl Bi—1iBj--Bi—1Bit1---Bar1 )

1 +2
S Gl DD DI o D K AR S B B

-1 pti—1 ‘1+1 —1)? -1 J 1 q+1—j
( ) ZVBZ ( ) 2]<25_2 ) ( ])1 wqxi[il ]ijl 1Bj-Bic1Biv1--Byr1lin
¢+l = H(ED) e (R (=) VA, By 1BisrBy 1ByBysaiin
1 q+1 q+2
i—1 a+1
m <_1) Vﬁi ( Z ( ) ¢A51 Bi- 151+1 5q+1##>
i=1 J=1,ji+1
g+l g+2
=D IID DGRVl
ABI Bz 157,«&»1 5q+1“7“75
1=1 j=1,j#1
q+1
i+
Z (_1)1 qwABl"'Bi—lBi+1"~Bq+1ﬂ?M?Bi’
=1

(35 (0)) a3,5,..5

“Pa+1
p 1 ak i 5
(1) mZ(—l) Vi (aW)ABI...Bi,lﬁBi...Bqﬂ
i=1
p 1 = q
(=1) mZ(_l) Vu (abw)Aﬁ Byp1lt
=1

q+1
pt+q P =1 y7_ - _ ptq+1 o
(=17 Vv, <(_1) Y DTV as 1y hyn T (D) VﬂwA/ﬁl..ﬂqH)
i=1
q+1
+3 _ _ _ _ _
~VuVitbaz, 5,0 = 2 (DI VNV Va5 B BB

J=1



39

Adding these together we have
i
= (81,8;; + 8;‘81,) (0
q+1 Jtq - - B o =
¢A61 Bat13H31 Z ( ) (wABI Bj_1Bj41--Bgy1isiB; ¢A51--ﬂjﬂﬁj“-~~5q+1ﬁ§5j;ﬂ)
g+1
¢Aﬁ1 q+17## Z <¢A51 ] 1#5]4_1 5q+175J7M ¢Aﬁ1 J 1#53+1 Bq+17M5
By commutation relation, we have
wABl ] 1#53+1 5q+1,537u wABr- 7J’Y'J.HBJ+1 Bq+17ﬂ78
= —2 <q_|— )VOwA,Bl By Rai B wal OG- 1Y O 1 - B .. IBJ 1#6J+1 By
Rﬁk N,B ¢Aﬁ1 Bk 1%3k+1 5] 1Hﬁ]+1 /3q+1 +R ,B T/)Aﬁl 3 1’Y/BJ+1 Bq+1
Hence
_Zq+1 T 0 _ _
Oéi B; 1.0 =1 Y41 OpB1 B _1 BB 1Byt
_Zq+1 Yz 3 _ _ _ _
Bk 6]- AB1 B 1VBrs1---Bj_1BBj11---Bgs1
q+1 py o _ _
+2 LR B_@DAﬁl...ﬁj_ﬁng...ﬁqH-
[
5.2. Linear Trace Li-Yau-Hamilton Inequality. In this section, we will derive the LYH

type estimate for the CR Lichnerowicz-Laplacian heat equation (5.2) on M x [0, 7). We refer
to [CH] and [NT1] for related estimates.

Lemma 5.2. Let 1,3 (7,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M x [0,T). Then

(51 — 44) (divn),, = =8ingson — 4R, (divn), + (Tor I),
Here we denote
(Tor I), =4 (—inAwﬂnw — 21A\H5 +in (dz‘vA)V Nay T IMAN 47 5 + 20 A0s (divn);) .
Proof. We first compute
10 _ 1(d
ot Mass) = 1 (W)aaa _
(515) = (77(15,)\5\ + 77045,5\)\ - 2Ra’7(_5,u77'yﬁ - R’y ;ﬂ?m - R aﬁfyg)(g
= Nosars + Tasins — (2Rassullyn + B 500 + R 4705) 5
(i) Now we deal with first term of RHS in (5.15) : By commutation relation

Nasaxs = Tas ex — Z:h(si%s,m - Rawx%m - R,\wx%&y - BS%XU@,A
= 770{5,)\55\ - Zh(ﬁnag,)\o - Ra'_yéj\n'yg,)\ - RW 677015,7 + R’Y 5\77047,/\
and _ _
(Masns = Mason)s = @ (Aasng — Aarss)x — @ (Mashin Ay — Naqliss AY) 5
= 1 (Acwn)@ - AaAH);\ —1 (A'yknom’/ - nno@A'y)\)j\
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Hence

na;?,ﬂé = 77045,6)\5\ - ihaf\ﬁa&,\o - Ro@a?\%&/\ - R’y 577045,7 + Rfy Xnoﬁ,)\
+i (Ao g — AMH); — i (Aanay — n”aﬁAvA)x :

(ii) For the second term of RHS in (5.15) : Again by commutation relation

Nag. o6 = Masion T4 (153406 — 755,31 4a0)
and
(as.35 = Nason) x = (150056 = M5 Raqss + B 57ay) -
One obtains
Nas  ox = Nad, 500 — i’?a&oxh,’\(s - (%SRawZ\ ~ R j\na"y) A\
Combining all three equalities, we have

Nas, N = Nad, 600 — i%S,oth\cs - (%SRM(SZ\ - R ;77(1@) \
+i (Mx5.3Aas — 553 Aar) -
Hence

Nosois + Nasins = (2Rassullyn + B 5am + B 475) 5

= A (divn)a - ithnaZi,)\o - inaS,OAhié
+ (_ZRaﬁgunw — R 5oy — 1V an’YS)d _
—Resssysn — B 51054 + BT 3Mamn + (=155 Rassn + B 50aq)

(5.16) —H: (Aa‘m)ﬁ o AW\H)Z\ — (A’YAUW'Y B nna"YAV)\)X

+i (1355406 — N55.3Aa)

= A, (dw??)a - ihﬁ%s,m - @'%Zs,o/\hﬂa
+ Rosps.6Mp — (R7 047773)6
+1 (Aown)fy - AaAH);\ —1 (A’Y/\nofy - m?ofyAv)\);\
+i (M35 3405 — M55 34ar) -

On the other hand, it follows from the CR Bianchi identity

Raﬁpﬁﬁ - Ranﬁ,p = iAa%Bh/ﬁ + iAa%&hﬂB - iAap7Bh75 - iAaﬂv5h757

we have
Royus sMyp = Razes ulli
= (Z’Aaéﬁh,ug + Z‘Aaé,ghlfy - Z'Aau,"yhzig - Z'Aa,u,ghtﬁ) Nyi
= (iAas 5Py — N Aaus) Ny
= iAus5H — inAausn.,
and

Ra’_yus,ﬁn'yﬁ — (R7 anvS)g = —RY o (dZ'Un),Y + iAa&SH — inAa,LL,’_anﬁ'
Thus (5.16) becomes

77(15,)\5\5 + 77045,5\)\6 - (2Ra'73u77fyp + R’y 3%7 + R7 oﬂ?qé)g

= A, (di?”?)a - ih&Z\%&,\o - i%&oﬂﬁa - R, (divn%
+iAys 5 H — inAausnyg + 1 (a3 Aas — 553 A0r)
+1 (Amn/w — Aa,\H);\ — 1 (Aw\r]m - nnaﬁAw\)x )
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The torsion part will be

iAgs s H — inAauzng +1 (Aavnw — AQAH);\

—1 (AVAnaﬁ - nna"yAVA);\ +1 (77/\3,5\*40«5 - HXAOM)

= —inAauﬁnw + iAa%;\n,w + iAMnW;\ — 21AnH5 — 1 (Avww-/)/-\
+in (A'y)\naﬁ/);\ + iAaﬁ (d“m)(‘s

= —i(n—1) Aausn, — 214 Hy +i(n — 1) (divA)7 Moy
+i(n — 1) Ayanas 5 + 20445 (divn); .

To sum up, we have

(15 — Q) (divn), = —inasa0 — Masor — BT 4 (divn),
+ (TL - 1) (dZUA)»y na"y +1 (n - 1) AM%@,Z\
+2iAas (divn)z — i (n — 1) Aapynyp — 20AanHy
and
(5 —48) (divn), = —8ifju50n = 4R" , (divn), + (rest.]),
where we have used the following commutation relation
_Z‘nai,)\o = _inaX,O)\ + iA’Y)\naj\,'_y - iAaA,’Wﬂ + Z‘A/\'y,j\na’y'

O

Lemma 5.3. Let 1,5 (z,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M x [0,T). Then

(2 —4A,) (( divn) a4 + (divn)ma) =Tor I1.
Here we denote
Tor I := —16nIm(Ay» (divn)s ; + (divA), ( divy),) + 161m ((divA), Hx + AaxHs5) -
Proof. From previous lemma
L (i) = (Do (diom),), + (<2300 — B o (divn),)
(5.17) + (—inAausn,y — 21AHs) 4 (2iAas (dzvn) )a
+ (m (alivA)7 Moy + mAw\na;%;Ja
Note

(Ap (divn),), = (divn), x5a + (divn), 5as -
From the commutation relation

(divn)a,AS\&
= (divn)a,m +1 ((dwn)g,A hozAsa — (dwn)m,\ haaAaZ\>
(5.18) ' ((divn) o ToxAsa — (divn), , hAaAgx)
= (di Wl)a AGA

[(dwn)am + i (divn), o haa + R7  (divn),]x
= (div )a,a)\f\ +1 (d’wn)a,oX hya + (R7 (dim?)a)j\
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and

(dwn)a,ha

= (dz’vn)a;@A +4 (dimy)ajo hya

+ (divn)g}/—\ o a T (divn) P54

= (divn), zax + @ (divn), 5

= [(divn)q a5 + (1 = n) i (divn), Asz]x + @ (divn) 4,4

= (divn) axn + (1= n) i ((divn), Azx), + i (divy), 4

Hence
(A (divn),) 4

(5.19) — A ((divm), ) + i (divn), oo + i (divn), o0

(1 - n) (( )0 A&X))\ + (RG A (d'l’l}’f])o.)j\
and from (5.17)
(i% A ) (divn), 4
(d UU)a (117 + i (d“)n)a a0 22.77045\@)\61
(5.20) +(1— n) ((divn), Agz)y + (—inAausmy; — 2iAa,\H;\)a
+ (m (de)W Moy + mAy,\m@j\) (2045 (divn)y) , -

By commutation relation again

Naxox = (divn) o + Aoallan s = Aarsller + (divA), 145
and
(divn) .05 = (divn), a0 + (divn), , Asa + (divn), (divA), .
Taking covariant derivative

Narora = (divn)g 05 + (AoxTlars) 5 = (Aaralion)s + (divA), 14g) 5 -
Hence
i (divn) , 0a + 7 (divn) , 50 — 21Max 0ra
= 2i (divn), g5 — 1 (divn), , Asa — i (divn), (divA),
—21 (dwn) — 2 (Aawa;\ﬁ)&
+21 (Aa/\,ana/\)a —2 ((di’UA)o' %a)@
= —i(divn), , Asa — i (divn), (divA)
+21 (AaA,EnoX)a -2 ((dZUA)o' 77a5) :
So (5.20) becomes
(4 ot Ab) (divn)a,&
= —i(divn),, , Asa — i (divn), (divA),

o na)\a +2i (AOé 75"705\)(1
(5.21) ([1—75) &wng Asz), + ?—inAalﬂnw—%AaAHA)&

<m dWA)v Nas + mAy,\ﬁa»—y,x> )
+2iAas (divn); , — 21 (divA)

Now we deal with the term [—2i (Aowa;\ﬁ)d + 20 (AarsM53) 5] -

-2 (AO/\T]OJ\,&)&

Qi

Ql

0'7& T]CM&'
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—21 (AU)\naS\,Fr)a +2i (Aa/\,c_fncr;\)a
= —22'140)\75[77&5\’5 - 2iAaA77aX,5a + 2iAaA,6d770X + 2iAaA,67705\,a
=—2 (AU)\T’OJ\,&& - Aa}\,E&T]US\)
— _22140—)\ (d@vr/)j\ﬁ_ + 2A0’)\h045'A54ﬁ77p,_\
_27“40);46?)77,)5\ — 24,3 A55N 05 3
+2 || A" H + 2in,x (divA), 5 + 200,53 A A — 203006 (| Al
= -2 <A0')\ (divn)j\,& — Nox (diUA)A75) )
where we have used the following commutation relations in third equality
Naxca ' ' ' '
= Naxas T Zha&Adpan\ - maaAapT]pZ\ — 145305 T 1455 0a
= (dZUT})X& + ihaaA@pnpj\ — n'l'Aa-pnpj\ — iAXaﬂm; + ZA;\(—TH

and
Aa)\,a'&
= Aaras T thasAspApy — thaaAspApy
+ihasAapAap — thraAspAap
= (divA), , — niAspAp +ihas | Al
Next

(1 TL) i ((d“”?)o— A&X),\ + (_Z.nAau,”yT/'yﬂ - 22.*Ao&\I{:\)

+ (in (divA), Nes + inATas 3 )

= (1 —n)i(divn), \ Asx + (1 — n)i(divn), (divA),
—2i (divA), Hy — 2iAanHy 5 + in (divA), ;as +in (divA), (divn),
+in <Ag)\ (dim]);\’& e/ (divA)/\ﬁ) )

All these imply

a

/~/

(% - 4Ab) (dim])a@
= 4ni (—Aax (divn), 5 + Aox (dz’vn);\ﬁ>
+4ni (— (divn), (divA), + (divA), (divn);/>
—8i (divA), Hy — 8iAayHy
= —8nIm(Aqx (divn); , + (divA), (divn),)
—8i (divA), Hy — 8iAayHy 5.
Therefore
(% - 4Ab) ((divn)a,d + (divn)&,a)
= —16nIm(Ay» (divn)s , + (divA), (divn).)
+16Im ((divA), Hx + AaxHx 5) -

Combining Lemma 5.2 and Lemma 5.3, we have
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Lemma 5.4. Let 1,53 (7,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M x [0,T). Then

(2 —4A,) Z

= ki [YTor 11+ (Tor 1), Va+ (Tor I), V,]
+8k1 (—i1a5,00Va T Max01Va)
—4k RY (dwn) Vo — 4k R7 (dwn) Va
+ky (divn), (& —40y) Va + ky (d ) (2 -
—8kq ((dwn) Vas + (divn), 5 Vay + (di 77) ~
+l€1 [( — 4Ab) Vs } Vﬁnaﬁ + k’l [( 4Ab) Vi ] naﬁ
+4k1V&V,B (2Ra'yu6nyy R ,377a7 R all B)
_8/€177a87,y <V5‘V6>7 — 8]{7177(1,@7,7 (‘/'5[‘/73)7
—8k11ap (VarVas + VasVis) — g
Now we are going to show that the Harnack quadratic Z is nonnegative for all time. First

we modify Z with small perturbation by 7) where 7,5 = 1,5 + €h,3 and define

7= lapes (VB (divn), + Va (divn)5>
(5.22) i [h_aﬁ (divn), Vs + he? (divn)g Va]
R B R (15 + eheg) VaVs + 2.

Let V be the vector field which minimizes Z. Then the following lemma holds

Lemma 5.5. Let 1,5 (x,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M x [0,T). Then

(2 —40,) Z
=ky [3Tor II + (Tor I),Va+ (Tor I),Vs]
—8k1iN4x 01 Va + 81115 03 Va
(5.23) +8F11 05 VA Vo V5 Va + 8k1VaVs Ry 15M4
g VI3V = b ] [VERV, Vi — Y]

—2Z 4 =0 (H +en).

Proof. The first variation formula gives
(5.24) (divn), + 1,5V =0, and  (divn); +1,,V5 =

Differentiating it we have that

VS (divn)a + (V«Sna&) VO’ + ﬁa&vsvﬂ = 07

(5.25) Vi (divn), + (Vitlea) Vo + 1,5 VsV = 0,
' Vs (divn)z + (Vsnes) Vs + 11,5 VsVs = 0,
V§ (divn)a + (Vg"]a&) VG + ﬁa&v§v€7 =0



Using above equations we can rewrite formula of Lemma 5.4 into following

0
— —4A, | Z
(at )
1
= k |:§TO’I“ II+ (Tor 1), Va+ (Tor 1), Va]

+8k1 (=500 Va + Mar 05 Va)

—8k, [(divn)aﬂ Vas + (divn) , 5 Vay + (divn), 5 Vay + (divn), Vaﬁ]
+8k1VaVs Razpuanan — 8kimap (VaVs)s — 8kimazs (VaVs),

+8k1 (Vo (divn) , + 005V Vo) Vas — ki (V, (divn) 5 + 155V Va) Vas)
8k (Vs (divn), + 7105 V3Va) Vary + (Vi (divn); +7,595V5 ) Vs )

H
—8k1map Var Vs + VasVan) — -

t
Hence
P .
AV
(m )
1
= kl[iTor IT+ (Tor I),Va+ (Tor 1), V4]
—kl . 2i7}a§\70>\Va + kl . 21.77)\5"05\‘/:1 + kl : 877\7/&5V»YV5[V7YV0—
~ H +
(5.26) s - 8110 Vo Vo V5 Vi + b - 8VaVs Ryt — 5
It follows from (5.24) again that we can rewrite Z as following
= k’l ~ ~ H+en
(527) Z = E (_na:}/V&Vy - nvavav'?/) + ;
which is
H+en Z kv - ~
(5.28) 2 7 + 2% (naanVv + nyavavﬁ) :
Thus
(5 - &) 2
= ky[3Tor IT + (Tor I), Vs + (Tor I), Va]
—8]€1Z-77a5\70)\V51 + 8]431’”])\&705\‘/& + 8k'1v54V5Ra’_yuanﬁ

+8]€1ﬁa&v7VaV7yV(; + 8klﬁa&v/:yvo’vfyv&
=5t (TasVaVs +71,5VaVs) — 7.
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Therefore (5.23) follows from the following :
Sklﬁaav’yvavvva - % (ﬁa&V&VU + ﬁoavavﬁ)
= Tl | VBRIV 5V = Y| [ VBRIV, Ve = Yo
_% [8_115 (H + €n> - k2_1 (%&VaVo + nodvavﬁ)]
— 5 / vE1 / iz
- naf |: 8]{:1V§V0 - @hgﬁ/} [ 8]€1V,YV@ — @h’ﬂi}

—% + Sg_tfjl (H +en).

O

Lemma 5.6. Let M be a complete strictly pseudoconvexr CR (2n + 1)-manifold. Let f (z,t)
be the subsolution of the heat equation satisfying

(%—Ab) f([E,t) <0 on M x [07T)

with f (z,0) <0 on M. If

T
/ / f? (2, t) e dy (x) dt < o0,
o Jm
then f (z,t) <0.

Proof. The proof can be easily modified into CR case, please refer to theorem 1.2 of [NT3].
O

Lemma 5.7. Let M be a closed strictly pseudoconver CR (2n + 1)-manifold with vanishing
torsion. Let 0,z (v,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-Laplacian
heat equation (5.2) on M x[0,T) with .5, (2,0) = 0 att = 0. In additional if M is complete
noncompact, we assume that

T
(5.29) / / e ||V (2, 8)||? dpdt < oo
o Jum

Then 1,50 (z,t) =0 fort > 0.
Proof. Since the torsion is vanishing, by CR Bianchi identity ([L1])
R =0=R5,

oyuB,0
and ([CKL1])

[Ay, T] = 0.
Thus

0
ETIO@RO =4 [AbnaB,O + 2Ro@uBn'yﬁ,0 - (Rwﬁna"y,o + Ra?%B,o)} :

(i) If M is closed, by the maximum principle, we obtain 7,5, (z,t) = 0 for all ¢ > 0.
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(i) If M is complete noncompact, since || T'n|? is a subsolution of heat equation as following

(2 — &) [Vrn)?

= (& — D) Naponcohachea + Mapo (5 — Db) Nez.ohschea
—2105,04McE 071155 hea

=2 (2Ras550 — Bapllano — Raxtlypo) Nezolschea
~20a5,0¢11cE 051 5c hea

<0

Y

where we use the condition of nonnegativity of CR bisectional curvature and symmetry of
7 tensor in the third inequality as following
(5.30) (QRaWuanﬂ,O = Rotlaz0 — RO&’V%B,O) Negolachea
2Rezut My oMceo — 1etes.oceo — Reameoceo
= 2R,z aNs — 2R (M)’
= —Ragpa(la — Ap)*
0.

Here we diagonalize 7., , (since symmetric) and denote 7, o = A,

By assumption (5.5), we can apply the maximum principle as in Theorem 5.6 to obtain
Tn(xz,t) =0 forallt <T. O

Theorem 5.7. Let M be a closed strictly pseudoconver CR (2n + 1)-manifold with non-
negative CR bisectional curvature. Let 1,5 (v,t) be a symmetric (1,1)-tensor satisfying the
CR Lichnerowicz-Laplacian heat equation (5.2) on M x [0,T) with n(z,0) > 0 at t = 0.
In additional if M is complete noncompact, we assume that n (z,t) satisfies extra conditions

(5.4) and

(5.31) /Me—w? 7 (z,0)|| du < oo,

Then n (z,t) > 0 fort > 0.

IN

Proof. (i) For M is closed, by Hamilton’s tensor maximum principle, we only need to check
for v € T (M) such that 7,503 = 0, (v = Tp), we have

2R 5,575 () vavs — RogN 0y (t) vavs — Rosn.5 (t) vavp
=2R (t) vavgs
>0

auB i

by curvature assumption.
(ii) For M is complete, The positivity of 1 (x,t) follows from Theorem 11.6 of [NN] by
assuming extra conditions (5.4) and (5.31). O

Lemma 5.8. Let M be a complete strictly pseudoconvex CR (2n + 1)-manifold with nonneg-
ative CR bisectional curvature and vanishing torsion. Moreover we assume Vn(x,t) = 0

forallt €10,T) and
T
[ ] e Inol duat <,
s Jum
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for some a > 0 and any 6 > 0, then

T
(5.32) / / e~ \|divn (x, )| dpdt < oo

5 JM
and

T 2
(5.33) / / e~ ||V divn (z,1)|]? dudt < oc.

5§ JM
Proof. Since bisectional curvature is nonnegative, we have
(& = A) lInll”
(534) =2 (2Ra'_yu[377'yﬁ (t) n (t)aB - R’yBUoﬁy (t) n (t)aB - ROfYUyB (t) n (t)aB) —2 <V777 V77>
< —|ldivn]*,

where we have used (5.30) for the last inequality. Let p be an reference point on M and
¢ be a cut-off function such that ¢ = 0 for d(x,p) > 2R or t < g, and ¢ =1 asd(x,p) < R

for ¢ > §. Then
T
/ / [ divn|* ¢*dudt

[ [ (2-2) e i
[ [ At [ 1ol .0) 6
é M M
T
2 2 9 )
_/MHnII (2, T) ¢ du+/0 /Munu (2, T) (¢2), dpdt

T
(5.35) < [ P @), = 2049 Inl? ) dut
On the other hand, as before in normal coordinate, we have

IV 112" < 23l Il
Y

IN

IN

2 Z Z (MaprMpa + Nassan) Z (nee ez + Ncenez 5)
¢,
8 Z Z Ns5~"88Naav"aa
v oo

2
8 ||77|| Z N88Naa,5

a,B,y

2 2
B + o,y
8||77||2 § : ‘7755,“/| 5 ’77 ,’V|

IN

IN

IN

a,Byy

IN

2 . 2
8n [|n[|” [[divn]|”.
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Then (5.35) becomes

I3 [y lldivn||* ¢*dudt
5.36
(5:36) < ffMHUH (¢%), + 2v8ng |In| || divn|| |V ¢| dudt.

2 1312
By ab < ea” + b7,

J§ 2800 Il |divn)| | V0] dudt. 2
< 320e [ [y, Il (VP dudt + £ [ J,, 6% dion]? dpc.

Let € = 5 and combine with (5.36)

T T
divn||? *dud 2 2 Y dud
/5 /Mn o]l ¢ ut§32n/5 /Mnnn (1Y + (62),) dpui

/ / | divn||? dudt < C / / ol dudt,
B R 2R

where C' depend on n and |V¢|. This implies (5.32).
Next following the same process as above with the fact that Vo7 (z,t) = 0 for all ¢ and
the torsion is vanishing, we have the similar estimate as in (5.34)

and then

0 ) .
(5 _ A) divn|? < — [Vdivn (2, 8)|

T T
/ / e |V div (z, 8)||? dpudt < C / / e~ || divn (2, ) |2 dudt.
) M 1) M

This completes the proof. O

and

Proof of Theorem 5.1 :

Proof. Since the torsion is vanishing, it follow from Lemma 5.5 and Lemma 5.7

0 25
R >
( . 4Ab> t°Z >0

for the vector field which minimizes Z and 0 < k; < 8. Since Nap = €hap on M x [0,T), by
first and second variation formula of Z (5.24,5.25), we have

VI < In * (divn),,|| < C () |[divn|
and
VsV || |77 % Vs (divn),, + 77 % (Vanes) Vo|
C (e) [ Vdivn|| + C () ||divn]|* .

VAR VAN
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Hence
22 < (7 VaVa|| + H + ten
< t? _fﬁo@,ﬁ;’éva (divn)g - fﬁo@’ﬁggl (Vaﬂ?ga) Vol +¢ HT]H + ten
< ||V (divn) || + ¢ (| (divn), Vo ||+t ||| + ten
< |\ Vdivn|* + ¢ || divn|* + £ |V + ¢ ]l + ten
< || Vdivn||> + t*||divn||* + C () ||divn||* + t ||n]| + ten.
By lemma 5.8

|12
’tzZH dpdt < o.

(5.37) /0 ' /M e

But t2Z = 0 at t = 0. By the maximum principle as in Lemma 5.6, we have Z > 0 for any
(1,0) vector field V. Let ¢ — 0, we have Z > 0. O

5.3. Nonlinear Version for Li-Yau-Hamilton Inequality. As an application of Theo-
rem 5.1, we derive the positivity of Harnack quantity of the CR Lichnerowicz-Laplacian heat
equation (5.2) coupled with the CR Yamabe flow (5.7). For simplicity, we work the CR
Harnack inequality on a closed strictly pseudoconvex spherical CR 3-manifold.

Definition 5.1. Let (M, J,0) be a closed pseudohermitian 3-manifold. We call a CR struc-
ture J spherical if Cartan curvature tensor Q11

1 1 21
(5.38) Qu = éRall +§RA11 — Ao — 3/1

11,11

vanishes identically. Here R is the Tanaka- Webster scalar curvature and Aqq is the pseudo-
hermitian torsion. Note that (M, J,0) is called a closed spherical pseudohermitian 3-manifold
if J 1s a spherical structure. We observe that the spherical structure is CR invariant
and a closed spherical pseudohermitian 3-manifold (M, J,0) is locally CR equivalent to
(837 Jcarw ecan)-

0
Lemma 5.9. ([CC]) 1. Let (M3, J, 9) be a closed pseudohermitian 3-manifold with posi-

0
tive initial Tanaka- Webster curvature R(x) > 0. Then
R(xz,t) >0
0
is preserved under the CR Yamabe flow (5.7) on M x [0,T). Here R (x,0) = R(z) > 0.
0
2. Let <M 3., 0) be a closed spherical pseudohermitian 3-manifold with vanishing initial

0
torsion Ay1(x) = 0. Then
All (.I', t) =0

0
is preserved under the CR Yamabe flow (5.7) on M x [0,T). Here Ay (x,0) = Ay1(x) = 0.
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Lemma 5.10. Under the CR Yamabe flow (5.7), we have

0 0. - _
() = _ Yoy 4 — %l
(5.39) orhas (1) = —2Rhys and —h™ (1) = 2Rh
and
9 o o o 9 o o
(540) al—‘ﬁa (t) = _2R755a — 2R70‘5B and aréa (t) = 2R hBOC'

. .0
Proof. For § = €2/ with 0(z,0) = e2/®0§ = g, the CR Yamabe flow is equivalent to

(5.41) % ()= —R(t).

Moreover, as in ([L1]) we choose admissible coframe {00‘ — 0" +2i f‘“@} and the Levi form
is given by the matrix h,5 = €2/ h,3, then

0
ahag (t) = —2Rhp.

On the other hand, since

IG5 =% + 200, f5 + 2fad3,
by (5.41) we have

0

57 %0 = —2R50% — 2R o0

and the other formula can be proved analogously. 0

Lemma 5.11. Let 1,5 (7,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) coupled with the CR Yamabe flow (5.7) on M x [0,T), we
have

(5.42) 357 (divn) oo = I+ hTh7 (V2 V3 Ginag)
and
(5.43) & (n? (divn), Vs ) = I+ BP0 (§ms) Vi + heP (divn),, 5 V.

Here we denote

I =2R(divn), s+ ((1 —n) Roznps + (L —n) R, (divy); + R+ H + R,T]-L;)
+(1=n) R (divn), + $h*"h7 (V=V, 51,5)
and
IT = 4h*P R (divn),, V3 + 2 (1 — n) h*’ R 1,5 V5 + 2P R V5 H

+hOP RV 5 (2n,5) Va + he? (divn),, 2 V3.
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Proof. We justify the identities by a normal coordinate at one point p with T (p) = 0. By
definition of covariant derivative

0 0 o 5
ano@,& = a (857705'7 - F5an0ﬁ - P(Wnaﬁ)
0

8 o o o
0 <§na”y> - (_2R755a - 2R,0456) Nozy — 2R hé’_ﬂ]oe&

0 _
= Vs (fper) — (2Rab — 255 0~ 2R i

Hence

2 (haB (divn),, VB>
= hP L (R0 5) Va + 2RhP (divn),, Vz + he? (divn),, 2 5 V3
= he? (2Rh57) Nas6Va + h*Ph%7 (2R 567, + 2R 207) 1, V3
—hPRY (2R hsy) 165V + h** W7V (8tn047) Va
+2Rh* (divn),, Vs + he? (divn), 2V3
= 4h*" R (divn), V3 +2 (1 — n) hQBRmMVB + hoP2R V3 H
+h RV (atnav) Vs + + h? (dwn)a AL
— I + h*Ph97V; (8105) Va + hP (divn), 5 V5.

Next we compute

2,
ot lap T

_ 0 ] I SR R
= 5 ( + (Map) = Toalsp = Daglasq — thaé’ﬁ)
— 0 6 0. _

= 0 (Ena,@ v) 21 hmné,@v Fmﬁnéﬁv

5 5
_2R77_'5ﬁ — 2R7657' 770[5 ~ FT,B 61577045 v

—2R 6h777]a6,6 - Ff'fy atnaB 1

= 0; (81&7701/3’7) 2R hTan5f37+2RT77af37
+2R BnaT'y 2R hT’Ynaﬁé

= ViV aiap + 2R o700 + 2R 1057
+2R o075 + 2R 06777557 2R 575Ny
—2R oMoz 7hyg — 2R hzansp, + 2R 2005,
+2R 304z - 2R hmnaﬁ 5
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so that

: % (divn)a,&
o] o7 1B

%E (h hwnaﬁﬂf) )

= 2R (divn), 5 + 5007 50as 4

= 2R (divn) o o + 30707 (V25 5n405)
—1—h°‘?hﬂ? (Rﬁ?naﬁ + Rﬁnaﬁﬁ + R’Q*THB + R’anvﬁﬁ — Rornoshyp — Rvgnaﬁv?hﬁ)
+hThP (=Rhzansp.y + RiNapy + Rplar, — R heynaps)

— 2R (divn) o+ (1= 1) Ropnpy + (1= n) Ry (divn) + RonH + R H 7
+(1—n) R (divn),, + $h°7h7 (VY 20,5)

=1+ 1" (V2V,20,5) -

N

O

Lemma 5.12. Let 1,5 (7,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) coupled with the CR Yamabe flow (5.7) on M x [0,T), we
have
(5.44)

% [hOéBh’YS (77045 + 5haB) VBV’Y] = [Il+ 2€Rhf87VBVY + ha,@hﬁ% (U@VBVV) :
en afB NaB
L A
9R— (2n+2) AR+ 2R?,
(2 —4A;) (RH) = (2n—2) (AyR)H +4R*H —8(R,H- + R-H,)

v
with
3.5 H
IIT == 4Rh*’W*'n,5V5V, and 1V := 2R—.
Proof. 1t is by straightforward computation as in the previous Lemma. 0J

Now we define
Zr=7+koRH
with ko to be determined and Z is
_ R
2

Z: [haﬁ (divn) 5 + COTL]} + k1 [ha’B (divn),, Vz + conj| + kih®" h"n,sV5V, + n

as before.

Lemma 5.13. Let 1,5 (x,t) be a symmetric (1,1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) coupled with the CR Yamabe flow (5.7) on M x [0,T), we
have

(2 —4Ay) Zg
= Y1 + 8k1n,5V, Vo Vs Ve — 220 4 S0 [

8t2

Flos [ VIRV 3Vy = Yy — Y8 Rhgs | [VEIV,Va = Yo hye — Y2 R
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where

Yl - /{51 (AbR)H + ]{31 (Rﬂ—Hﬂ—— + R’»FH’T) - 8/{?2 (R’THJ— "‘ Rﬂ——H?T)
+k1 (1 =n) (Rar + Ray) 1,5 + ko (20 — 2) A RH
+ (4k2 — %) R?*H + 2k1 (R, Va + RaV,) bz
+8k1VaVaRoyustyn + (2ke +2 — 5) B

In particular if n = 1, by taking V = 2(8]“;—1%1)‘/, (5.45) becomes

(5.45)

Vi = BRAR+ (VR V) + (%2 - 1) B2

+%R [VI°+ 2 (2ks +2 - &) B)H.

(5.46)

Proof. As before we compute

(2 —4A,) Zg

=F + 877(15V,YV5V:YV5[
s [Js_iﬁvx,vg - Vf—ghﬂ] [\/Sk;lvwva - *\/f—ghw]
_2Zg + &k
t 8t2 )

where the extra term £ comes from covariant derivative of the Levi metric haB under the
CR Yamabe flow and lemma 5.5
E =k + k11 + k11T + ky IV + bV + 8k VeV Ropusmg
= _leRUQEV&VU - leRnJ&VQVE + kl (RJH;,*- + Rﬂ*—H’T)
—8ky (R H:+ R-H )+ ki(AR)H
+k1 (1 — Tl) (R;y;- + Rﬁ-,y) 7’]7_,7 + kg (2n — 2) (AbR)H
+4ko R?H + 2k1 (R Va + R4Va) by,
+8k1VaVaR + 2%.

Rearranging these terms we obtain
(& —4A,) Zg
= 3/1 + 877045V7VUV:YV5¢
o | VIRV 3Vy = Lhy — Y2 Rhys | [ VBRIV, Ve — Yhos — Y8 Rhog

S—kir _ 2Zn
+8t2H t

aBuy

where
Yy = kiARH + k(R H, + RoH.,) — 8ky (R, H+ RAH )
+k1 (1 — TL) (R’»Yf- + Rﬁ-’y) 777@ + kg (Zn — 2) AbRH
+ (4]{:2 — %) R?H + 2k, (RoVa+ RsVa) hoyrn,
+8k1 VaVs Ropusiys + (2ke +2 — ) A
Since 7,3 is positive definite, by (5.24) we have R H;+R:H ; = — (R Vs + R aVa) hyrn, 5
so that
Yi - kl (AbR)H + (8]’6’2 + kl) (R,ava + R,&Va) h’y?n’rﬁl
+k1 (]. — n) (R,’y? + Rﬁ-»y) 777.,;, + kQ (2” — 2) AbRH
+ (4]€2 - k_21) R2H + 2kl (R,avc_u + R,&Va) h’y‘T‘nTﬁ
+851Va Vs Rogusny + (2ks +2 — &) £



Forn=1
Vi=8RAR+ 2 8k + ki) (R, V- + R:V,)

+2 (4ky — %) R* 4+ 8R IV + Z 2k +2-5)4H.

= 2(8katkr)
Taking V = ==—V,
Vi= BRAR+ (VR V) + (32 1) B2

+(skjﬁcl)23 HVHQ + 1?21 (2k2 +2- kQ_l) %]H-

(5.47)

Proof of Theorem 5.2 :
Proof. 1t is known that

R
2A0,R + R* + — (VR V) =0

is the equation for a CR Yamabe expanding soliton ([CC]) with the CR vector field V. The
Hamilton-type Harnack quantity ( we refer to [H1] for some details) for the CR Yamabe flow
is defined as

©
8
where © < 1 is to be determined (see Remark 5.2). A straightforward computation for
O = 9, — 44, yields

R
Zo (0.V) = 28R+ B2+ 2 4+ (VoR V) 5+ S RVIIS

076 (6,V)
= 12RAR — 4||VoR|5, + AR® + 2R?/t — R/t?
(5.48) +R (VR V), o+ SR V|5, + (VoR+ QRV,OV)

=8 (V) (Vi) ViV 5 = OR ViV |5, = © (VR ¥, (V1) )

70
We prove the theorem by contradiction. Suppose that Zg (6,V) < 0 at some space-time
point for some V. Then there exists a first time ¢y, a point py such that at (po, to),

(5.49) Zo (0,V)=0.
We can extend V' so that at (po, to)
4R 1 R1Vi RV

Then the last three terms of (5.48) become
=8(Vy (VoR), ViV), — ORIIV:VI3, = © (Vo Vs (IVI3,))

; 7,0
4R 1, R V7
6r T R ;
where we have used R;; = 0 due to Lemma 5.9 and (5.38).

Now if V,R + %RV # 0 at (po,to), we extend V by choosing the value of OV at (po, o)

to kill all terms on the right-hand side of (5.48) except, say 2R?/t. Then it follows that
0> 0,7 =40, Z +2R*/7 > 2R*/T

=20R

2
R,V
+20R |0
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at (po, o). This is a contradiction. So we may assume

©

(5.50) ViR + ZRV =0
at (po,to). By (5.49) and (5.50), we have
(5.51) 20,R = —R?— % + %R ||V||§,9

at (po,to). Now combining (5.48), (5.50) and (5.51)

OZ6 (0,V)
= (—2+3) R+ (—4+5) &
(552 H(E R R VI (-1 3) 8
n <9(13—2®)2 n (;?_;> R HVHie _ (1_29) RHVtHig

We apply the Young’s inequality for the last term of (5.52) and obtain

0(1-0)? 3 4 1-0) R||V|]?
(_1+%)§+< (32) +%>RHV||J,6_( 2) ”t”

R e(1-0)° | e 1-9)? 4
> ((1+3 =) B+ (U5 + & - RE) RIVIG,.

(5.53)

This will lead a contradiction again if we can choose € and © to make the RHS of (5.53)

to be positive which is possible by taking €2 = % and

e1-06? e @1-0)
—— o >
32 32 16¢2
That is
1
@2 — 20 + 5 <0

which is true if 1 — g <O <1+ ‘/75 Hence we may choose © = %. Then we are done. [

Remark 5.2. In the paper of [CC|, we have the following Harnack inequality

R ©
20 R + B+ =+ (ViR V) 1y + 2 RV][5y 2 0

for © = 1. However, it is not enough to obtain Y, > 0 unless, say © = = so that there exist

10
ki, ko satisfying (5.57).

Proof of Theorem 5.3 :

Proof. From Lemma 5.9, the vanishing torsion and positive Tanaka-Webster curvature are
preserved under the CR Yamabe flow. By imitating the argument as in theorem 5.1, Theorem
5.3 if Y] is nonnegative. To determined Y; is nonnegative, by Theorem 5.2, we require the
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coefficients in (5.46) satisfy

8k
(5.54) (—2 - 1) > 1
k1
2k? 3
(5.55) s > =
(8ko + k1) 80
2 k1
5.56 — | 2k +2 — — > 1
(5.56) 2 ( r2-t ) >
and also we require 0 < k; < 8. These are equivalent to
8
(557) —k?g S ]{?1 S min {8, 4]{?2, Zk’g + 2}
160
=21

3

By choosing ks = 1 and k; = 4. We are done.
Note that for n = 1, the CR Lichnerowicz-Laplacian heat equation (5.2) will be the special
form 5

Pyt 40y 1 + 2Rt — (Ruamg + Ruamg) = 487

Hence (5.9) follows. O
0
Remark 5.3. 1. Let (M, J,0) be a closed pseudohermitian 3-manifold with vanishing initial
0 0
torsion Aq1(x) =0, then Ry (x) = 0. In additional if (M, J) is spherical, then
R,O (ZE, t) =0

0
under the CR Yamabe flow (5.7) on M x [0,T). 2. Let (M3, J, 0| be a closed strictly

pseudoconvez spherical CR 3-manifold. Since Ri1 = Rhq1, then 1,1 := Ri1 satisfies the CR
Lichnerowicz-Laplacian heat equation (5.2)

0
aRli - 4AbR11
coupled with the CR Yamabe flow (5.7) on M x [0,T) satisfying
Ap (2,t) =0
and
Mio (T,t) = Rygo(x,t) =0
for all t.

Proof of Corollary 5.4 :
Proof. 1t follows from (5.39) that R,;; = Rh1 satisfies
SR = (§R)n1+ R(5h)
= (4R +2R*)hy1 + R(—2Rha1)
4(AbR)h1T — 4A5(Rhlf)
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Hence we apply Theorem 5.3 by taking 7,7 := R7. We obtain

Zr=20R+ R*+ &+ 4(V,R, V) + 2R |V|?
LOR+ 2 +8(V,R, V) +4R|[V|?)
0.

In particular, taking V' = 0, we have

E 2
i >

on M x [0,7T). O

IV Il

6. CR Gap Theorem

In [GW1], [S] and [Y], it is conjectured that a complete noncompact Kihler manifold of
positive holomorphic bisectional curvature of complex dimension m is biholomorphic to C™.
The first result concerning this conjecture was obtained by Mok-Siu-Yau ([MSY]) and Mok
([Mok2]). Let M be a complete noncompact Kéhler manifold of nonnegative holomorphic
bisectional curvature of complex dimension m > 2. They proved that M is isometrically
biholomorphic to C™ with the standard flat metric under the assumptions of the maximum
volume growth condition

V, (r) > ér®™

for some point 0 € M, § > 0, r(x) = d(o, z) and the scalar curvature R decays as

R(z) reM

<—’
I

for C' > 0 and any arbitrarily small positive constant €. Since then there are several further
works aiming to prove the optimal result and reader is referred to [Mokl1|, [CTZ], [CZ2], [N4]
and [NT2]. A key common ingredient used in the previous works such as [MSY], [N4] and
[NT2] is to solve the so-called Poincare Lelong equation /—109u = p, for a given d-closed
real (1,1)- form p and then show that trace(p) = 0 by using (6.1). In particular in [NT2],
Ni and Tam showed that the solution u(z) of /—199u = Ric is of o(logr(x)) growth with
the extra condition lim inf, o exp (—ar?) [, ) R* (y) du (y) < oo for some a > 0. Then the
result follows from the Liouville theorem for plurisubharmonic functions which asserts that
any continuous plurisubharmonic function with upper growth bound of o(logr(z)) must be
a constant.

In 2012, L. Ni finally obtained an optimal gap theorem ([N2]) on M with nonnegative
bisectional curvature without the maximum volume growth condition, provided the following
scalar decays

1 )
G /BO(T)R(y)du(y):O(T ).

In the paper of [N2]|, L. Ni adapted a different method which has also succeeded in the
recent resolution of the fundamental gap conjecture in [AC]. The key step is , using a sharp
differential estimate and monotonicity of heat equation deformation of positive (1, 1)-forms as
in [N1], it provided an alternate argument of proving the above mentioned Liouville theorem.

(6.1)
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A Riemannian version of [MSY] was proved in [GW2] shortly afterwards. This part is
concerned with an analogue of CR gap theorem on a complete noncompact strictly pseudo-
convex CR (2n + 1)-manifold with nonnegative bisectional curvature. Recently, enlightened
by the work of [N1] as above, we obtained the linear trace version of Li-Yau-Hamilton in-
equality for positive solutions of the CR Lichnerowicz-Laplacian heat equation and then CR
monotonicity of heat equation deformation of positive (1,1)-forms is available in order to
prove the following CR gap Theorem :

Theorem 6.1. Let M be a complete noncompact strictly pseudoconvexr CR (2n+1)-manifold
with nonnegative bisectional curvature and vanishing torsion. Then M 1is flat if

1 )
T L S =0 (),

for some point o € M. Here S (y) is the Tanaka- Webster scalar curvature and V, (r) is the
volume of the ball B, (r) with respect to the Carnot-Carathéodory distance. As a consequence
if M 1s not flat, then

(6.2)

2

r
liminf—/ S(y)du(y) >0

for any o € M.

Here we adapt the method as in [N2]. Below is the main idea in our proof. We first work
on degenerated parabolic systems in CR manifolds which is different to Kéhler manifolds :

{% (:L‘,t) = Aqu(ZE,t),
¢(x,0) = Ric(z)>0.

Here Ap is the CR Hodge-Laplacian operator, Ric(x) = iR,30% A 6” is the pseudohermitian
Ricci form of a strictly pseudoconvex CR (2n + 1)-manifold.

Let M be a complete noncompact strictly pseudoconvex CR (2n+-1)-manifold with nonneg-
ative bisectional curvature and vanishing torsion. It follows from Proposition 6.1 that there
exists a long time solution ¢(x, t) with ¢(z,t) > 0 on M %[0, 00). Now let u(z,t) = A(¢) which
is nonnegative and satisfies the CR heat equation with u(z,0) = S(x). Li-Yau-Hamilton Har-
nack quantity (6.21) and monotonicity property (6.35) with vanishing mixed-term implies
that tu (x,t) is nondecreasing in ¢ for any x. Finally, the assumption (6.2) and CR moment
type estimate (6.12) imply lim; ., tu (xo,t) = 0. Hence the monotonicity and maximum
principle imply tu (z,t) = 0 for all ¢ > 0 and any x € M . The flatness then follows from
u (z,0) = 0 which is clear by continuity.

This chapter is organized as follows. In section 6.1, we obtain the CR moment type
estimate which is the first key estimate for the proof of main theorem. In section 6.2, we
relate the linear trace Li-Yau-Hamilton type inequality of the CR Lichnerowicz-Laplacian
heat equation to a monotonicity formula of the heat solution. In section 6.3, we prove the
CR optimal gap Theorem.

6.1. CR Moment-Type Estimates. Let (M, J, ) be a strictly pseudoconvex CR (2n+1)-
manifold. In our recent paper ([CCT] and [CCF]), we consider the CR Hodge-Laplacian

1 _
AH = _i(Db + Db)
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for Kohn-Rossi Laplacian U,. For any (1,1)-form ¢(z,t) = ¢,50% A 93, we study the CR
Hodge-Laplacian heat equation on M x [0,T)

(6.3) 9 6(w.1) = Aud(a, 1)

It follows from the CR Bochner-Weitzenbock Formula ([CCF]) that the CR parabolic equa-
tion (6.3) is equivalent to the CR analogue of Lichnerowicz-Laplacian heat equation :

0
a@%g = Ab¢aﬁ + 2Raw5’¢vﬂ - (Rqubofy + R@‘YQSWB)'

In this section, we consider the following Dirichlet problem of degenerate parabolic systems

(6.4)

(F—Am)e = 0, onQx[0,00),
(6.5) ¢ (z,t) = 0, on 99 x [0, 00),
¢ (I7 0) = gblnz (Q?) on ).

In contrast to Kéhler case, the regularity of a solution for Ay up to €2 may depend on
geometry around the characteristic point at the boundary ( [J1] and [J2]) in the CR setting.
In fact,

Proposition 6.1. There exists "sweetsop” exhaustion domains €, such that the solutions
¢, of (6.5) are C (CQ’O‘ (Q#,A“) , [O,T)).

We will give a detail proof of Proposition 6.1 in Appendix A. After the construction of
the "sweetsop" exhaustion domain €2, for Ay as in Proposition 6.1, one is able to apply
semigroup method ([P]) to obtain better regularity of the solution of the CR Lichnerowitz-
Laplacian heat equation (6.5) which depends on regularity of the initial condition. One more
tensor maximum principle below is needed in the proof of main theorem in order to have
nonnegativity of the constructed solution ¢, if the initial data is nonnegative.

Proposition 6.2. Let (M, J,0) be a strictly pseudoconver CR (2n + 1)-manifold with non-
negative bisectional curvature. Let Q be bounded domain in M. Assume that ¢ (x,t) is a
(1,1)-form satisfies

(%—AH)¢ = 0, onQx][0,00),
o (x,t) > 0, ondfx[0,00),
¢ (x,0) > 0 onQ.
Then ¢ (x,t) > 0 on £ x [0, 00).
Proof. Similar to proposition 11.1 in [NNJ. O

The first key estimate for the proof of main theorem is the moment type estimate. This
estimate is first introduced by L. Ni [N3]. By using Li-Yau type heat kernel estimate, he
proved that a nonnegative solution u(z,t) of the heat equation are %2 growth if and only
if the average function k (z,r) := ﬁ / By (y) dy of the initial data f (y) grows as r?
in a certain complete Kaehler manifold. In our CR setting, we only has the CR moment
type estimate for a nonnegative heat solution which can be express as P, f for a smooth
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bounded function f on M. In contrast to the Kihler case, in general, we do not know if any
nonnegative heat solution could hold.

To introduce our version, we will follow from semigroup method as in [M] ( also [BBGM]).
It is known that the heat semigroup (), is given by

P, = / e MdE,
0

for the spectral decomposition of A, = — fooo AEy in L* (M). Tt is a one-parameter family
of bounded operators on L? (M). We denote

am):/Mp<x,y,t>f<y>du<y>,

for f € C§° (M) . Here p(x,y,t) > 0 is the so-called symmetric heat kernel associated to
P,. Due to hypoellipticity of Ay, the function (x,t) — P,f (x) is smooth on M x (0, 00).
In the following we use V (1) and B, (r) denote the volume of a unit ball with respect to

the Carnot-Carathéodory distance and measure du = 6 A (df)". We recall some facts from
[M] ( also [BG] and [BBGM)]). For f,g,h € C* (M), we define

L'(fg) = %Ab(fg)_fAbg_gAbf‘
I (fg,h) = [T%(g,h) + g7 (f. D).

1_‘2Z (fvg) - % [Abrz (fvg) _PZ (vabg) - FZ (Q,Abf)] :

Here we denote F(f) = F(f7f)7 FQ(f) = F2(f7f)7 FZ(f) = FZ(fvf) and FQZ(f) =
I'Z (f, f). Note that in a complete strictly pseudoconvex CR (2n+1)-manifold with vanishing

torsion. One can have T'(f, f) = (Vuof, Vof) and Ty (f) = ||Vifl|? + Ric(Vyf, Vyf) +
VeV f||? and TZ (f,9) = (Vo f, Vrg).

Definition 6.1. We say that (M, J,0) satisfies the generalized curvature-dimension inequal-
ity CD (py, ps, k,d) with respect to Ay if there exist constants p,; a real number, p, > 0,
k >0, and d > 2 such that the inequality

To(f) + vT5() 2 S(Buf) + (o1 — ST + pal ()
holds for every f € C*°(M) and every v > 0.

We define
3K
6.6 D:=d|1+ —)
( ) < 2p,
and

pr =max (—py,0).



62

Lemma 6.1. (i) ([M, Theorem 4]) Let (M, J,0) be a complete strictly pseudoconvex CR
(2n + 1)-manifold of vanishing torsion with

Ric > py.

Then M satisfies the generalized curvature-dimension inequality C'D (,01, be) | 2n) with py =
%,k =1 and d = 2n. Moreover for any given Ry > 0, there exists a constant C (d,k, py) > 0
such that

exp (2dp; R})
R’p (x, z, Rj)
for every x € M and R > Ry. In particular if M is a complete strictly pseudoconver CR
(2n + 1)-manifold of nonnegative Ricci curvature and vanishing torsion, then there exists a
constant C1 > 0 such that

1 (B (z,R)) < C(d, K, py) R" exp (2dp; R?)

Cl D
6.7 B(z,R) < ————-R
for R > Ry.
(i) (IBG]) Let (M, J,0) be a complete strictly pseudoconvexr CR (2n + 1)-manifold of
nonnegative Ricci curvature and vanishing torsion. Then, for any € > 0, there exists a
constant Cs(d, py, K, €) > 0 such that

2
(68) p(z,y,t) < < (d’fz’ . £) T exp <— d4 & y)t) :
p (B VD) (B VD)t N 0
(i1i) (IBBGM)]) Let (M, J,0) be a complete strictly pseudoconvexr CR (2n + 1)-manifold of

nonnegative Ricci curvature and vanishing torsion. Then there exists a constant Cy > 0 such
that

C
(B (z, R))
Remark 6.1. Let (M, J,0) be a complete strictly pseudoconver CR (2n+1)-manifold of non-

negative Ricci curvature and vanishing torsion. (6.7) and (6.9) together imply the doubling
property. That is

(6.9) D (a:, x, 2R2) >

(6.10) p(B(z,R)) < mRD < C(£)Ppu (B (a: %)) .
By taking Ry = %, then there exists a constant Cy > 0 such that
(6.11) i(B (2, R)) < Cy(n, D) p (B (2, £)).

Applying above Lemma 6.1, we are able to prove the following moment type estimate for
those solution of form P, f.

Theorem 6.2. Let (M, J,0) be a complete strictly pseudoconver CR (2n + 1)-manifold of
nonnegative Ricci curvature and vanishing torsion. Assume that u is a solution of CR heat
equation

0

—u = Ayu

ot
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such that

u(z,t) =P f
for a nonnegative bounded function f. Assume that for any a > —D — 2 (where D = 2n +6
is defined in 6.6), we have

1 a
a0 /Bx(r)f(y) du(y) < Ar

for a constant A > 0 andr > R > 1. Then there exists a constant C' (n,d) such that
(6.12) u(z,t) < C(n,d) Atz
for all t > R2.

Proof. Let § = &\/}’y)‘ Thus

(613) B. (Vi) € B, ((5+ 1) V).
It follow from (6.11) and (6.13) that

Vo (VE) <V, (6 + 1) vE) < C(dirpy) 5+ 1)V, (V).

That is,

Vo (Vi
(V)

N—

(6.14) < C(d,k,p,) (6 +1)".

=

We can rewrite (6.8) as

K,€ 2 z,
b ((L’, Y, t) S Cldpy, exp <_ %4&5:313)
(6.15) Cld.pyunce) (M(BE

1
zvi)) ) ® dz(z’y))
< _ ’
< S (e oo (<62
C(d’P 7”75) _d2 fE,y)
= u(p(ev)) P (-&2)

Then, based on (6.14) and (6.15), Theorem 6.2 follows from the proof of Theorem 3.1 in
[N3] in case of u(z,t) = P,f for a nonnegative bounded function f. The use of volume
comparison can be replace by (6.10). O

—~

6.2. CR Lichnerowicz-Laplacian heat equation. In this section, we first relate the linear
trace Li-Yau-Hamilton type inequality of the CR Lichnerowicz-Laplacian heat equation to
a monotonicity formula of the heat solution. More precisely, let 7,5 (7,t) be a symmetric
(1,1) tensor satisfying the CR Lichnerowicz-Laplacian heat equation

0
(616) a%@ = Ab%B + 2Ra’7,u3777ﬁ - (R*yﬁna"y + Raﬁ%,@)

on M x [0,T). As in the paper of [CCF]|, we define following Harnack quantity

1 H
Z(x,t) (V) :=k <§ ((divn)a’a + (divn)a’a> + (divn),, Va + (divy),, Va + V@Vgna5> + -

for any vector field V € T (M), H = h*Py,5 and 0 < k; < 8. We proved
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Theorem 6.3. ([CCF|) Let (M, J,0) be a complete strictly pseudoconvex CR (2n + 1)-
manifold of nonnegative bisectional curvature and vanishing torsion. Let 1,5 (v,t) be a

symmetric (1,1) tensor satisfying the CR Lichnerowicz-Laplacian heat equation (6.16) on
M x (0,T) with

Mg (2,0) >0,
and
Vrn(x,0) =0.
Then
Z(x,t) >0

on M x (0,T) for any (1,0) vector field V and 0 < k; < 8 if there exists constant a > 0 such
that

(6.17) By S I @ DI dudt < o,
(6.18) S fu e IV0m (2, 0)|? dudt < oo,
(6.19) Jur €™ In (2, 0)]| dp < oo

Let ¢ be a (p, q)-form. Define contraction operator A : AP? — AP~1471 a5 follow

o — 1 (_qylpaB o
<A¢)O‘1'"O‘P*161'“6q71 - \/jl( ]‘) h ¢aa1...ap—1,351---5q_1.
Then it is a straightforward computation, we have

Lemma 6.2. ([CCT]) Let (M, J,0) be a strictly pseudoconvexr CR (2n + 1)-manifold. We
have the Kdhler type identities

(i)
(05, A] = —V/=10; and [0y, A] = V-10}.
(i)
[0p, ;) = 2iT8, and [y, 0,] = 0.
(iii)
[, Ar] = —iTd, and [A,Ay]=0.

Lemma 6.3. Let ¢ be a nonnegative (1,1)-form. Define Q (¢,V) as
(6.20)

Q9. V,ks) = ks (5 (3505 = 885) &+ 7 (830), — 75 (B50)y + vy ) + 52,
Then this is equivalent to
Q (77; V, k2) = ko (% <(dw’7>a,a + (divr])@a) + (dw’?)a Va + (divn)a Va+ UQBVO‘VB) + %

for a symmetric (1,1)-tensor n,5 := \/L_—lqbag. In particular, by taking V =0, and ky = 2,
we have

(6.21) Q (6, V) = —ApAp + (05 A, + conj) o+ ¢
for u = Ag.



Proof. As in [CCF], we have the formula for a (p,q + 1)-form ¢
(513"7#)&1”,%51”,5&7 — (1) G (1) Vit aphy 5o siBid

and a (p+ 1, g)-form ¢

q

(D50 ay...appss, = (=1 51 ViProanr...aphs .. 3,
Thus for a (1, 1)-form ¢, we have
(050)5 = —Vadus
and
0,050 = Vs (Vadys) -
Then the first term of (6.20) become
51 (0505 = 050;) 6 = 57505050 + conj.

= ﬁvw (Vﬁgbm) + conj.

=1 ((divn)a@ + conj.)
We are done. On the other hand, taking V' = 0 and ks = 2, by lemma 6.2 we have

51 (50 —050;) 6 = O5[0n, Ao — 05 [0h, Ao
= —0;0yAd — Oy Oy A@ + Of N0y + O3 AOyo
= —ApgA¢ + 05 N0 + 05 AOy.
Here we use the fact that J; f = 9;f = 0 for any scalar function. Then formula (6.21)
follows. N

Remark 6.2. The reqularity of the heat solution in Proposition 6.1 and the following Lemma
is used to prove the "miz-term" (Oy Ay + conj) ¢ in (6.21) vanishing as in (6.35) and (6.36)
which s the key step in the proof of our main theorem.

Lemma 6.4. Let (M, J,0) be a complete strictly pseudoconver CR (2n + 1)-manifold with
nonnegative bisectional curvature and vanishing torsion. Let ¢ be a solution of the CR
Hodge-Laplace heat equation (6.4). Then ||A8bgz5H satisfies

(5 — 20) [Ad0]| - < [[ATBy].
Proof. We have the formula for a (p, q)-form
(5b¢> = (_1)17 Z;rll (_l)iil vBi,l?Dal~~-Oép81~--Bi—1Bi+1~~Bq+1'

a1y Byst
So that B
(050) 455 = —Vaay + Vidas
and B _ _
(AB). = ih*PV50,, — ih7V0,5
= hVgne; — h*V5145
= (divn), — Vsu.
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Note that Ady¢ satisfies the CR Hodge Laplace heat equation, i.e.,

(2 +Au)A0d = —AdApe+ AgAdyo )
= —AAyOY + AgAdyd +iATOp¢
= [Ap,A|Oyd + iAT Oy

= ATy

Hence we have

(2 — 2) /[[Ado||* = uﬁ?Ziu (—ApAGY — AyAT) + Mgzju - iAT Dy

I | _(AD = Ao A
=~ Taona] o (Aab¢)a(A8b¢)B+”Agz o iATO

where in second line we use formula (3.1) of [CCF] for (1,0)-form Ady¢. O

Before going any further for the proof of our main theorem, we need two more lemmas.

Lemma 6.5. ([NT2]) Let f > 0 be a function on a complete noncompact Riemannian
manifold M™ with

Rij Z — (m — 1) K
for some K > 0. Let

w(a,t) = /M H (2.y.1) f (y) dy.

Assume that u is defined on M x [0,T] for some T > 0 and that for 0 <t <T,

T2
29 li T —0.
(6.22) L eXp( 20t> /Bo(r) /

and p > 1,

1
Vo () fBo(r) uPdz 2 2 o
x [ s s s 1 s
S Oy [Vo<14r> S ary 7 + <02 (K1) [y <7% + T) P (“Tm) 77 JBa(s) fd (7)) }
where Cy (K, t) = Cy,te Kt and C,, is constant only depend on dimension M.

Lemma 6.6. ([Li]) Let (M, J,0) be a complete strictly pseudoconver CR (2n + 1)-manifold
and f (x,t) be the subsolution of the heat equation satisfying

(2 = Ay) f(z,t) <0 on M x [0,T)

with f (z,0) <0 on M. Then f(x,t) <0 for allt <T if there exists a > 0 such that

ST £ @) e dp (x) dt < oo,
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6.3. Proof of CR Optimal Gap Theorem. In this section, by using the CR moment
type estimate (Theorem 6.2) and the linear trace LYH inequality (Theorem 6.3), we are able
to prove the CR optimal gap theorem.

Proof of the main theorem:

Proof. Here is the main idea : In the following we first use proposition 6.1 to construct n,
on exhaustion domain €2,,. Schauder estimates provide the convergence of 7, (Step 1) to a
unique solution 7. Define u := tr,n and u is a solution of sublaplacian heat equation with
initial condition S (y). By uniqueness theorem ([D]) of the nonnegative heat solution we
have u() — u. Now this allows us in one hand using trace linear Harnack estimate on tr,n
to obtain monotonicity formula

(6.23) (tu), > 0

which apply to every nonnegative heat solution and on the other hand using moment type
estimate (which only apply to heat solution with P, f type and f is bounded) on u®® := P,p(¥ S
to obtain that
u® = o (t’l) .
Hence as well as u. Combing these results, the initial condition are forced to be zero and
the gap theorem holds.
Note that we derived the monotonicity property (6.23) by lemma 6.3, 6.4, and the vanishing

of mixed term in LYH quantity (6.21). The condition (6.2) is applied while we use Theorem
6.2 for a = —2 to obtain

U=0 (t_l) .
Now we split the detail proof into two steps :
(i) Step 1 : Convergence of nff): Let €2, be an sweetsop exhaustion domains,

p% be a cut-off function support in B (2R;) such that 0 < p® < 1, p() = 1 in B(R;),
HVTV?Qp(i)H < % for my,my = 0,1,2, my +mo > 1 and some constant C'. Note that for

each i, there exists N; such that for 4 > N;, B(2R;) C Q,. Let n,(f) be the solution as in
Proposition 6.1 on €, for any ; > N; with initial condition p Ric. Now we define

u® (z,t) = [}, p(x,y,t) pDS (y) dp (y) -
Then u® (z,t) satisfies
(6.24) D) (2, 1) — Acu® (z,t) = —2uly (x,1),

where A, = Ay + €272 is Riemannian Laplacian with respect to the adapted metric h,.
h + 6_292 Moreover, proposition 6.2 imply nu) (x,t) is nonnegative and

(6.25) ‘

m (. 8)]| < tnnld (2.8) < u® (a.0),
for all > N;. Now we estimate uéio) (z,t) first. Since u®® (z,t) is a solution of sub-Laplacian
heat equation, we have

uby () — Agugy (,6) = 0
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due to vanishing torsion. We define ) (z,t) = ‘u((fg (x,t) ), and observe that it is a subsolution

of heat equation with initial condition satisfying the followings
19 (2,t) (2, 0)]

= VY5 (y)
S EXB?RZ‘\RZ‘S (y) )

where xp, (y) is a function with 1 in annulus B (2R;) \B (R;) and zero elsewhere. By

maximum principle [) (z,t) is controlled by a sub-Laplacian heat solution.
Next we define

C
g(x,t) = /Mp (z,y,1) EngRi\RiS (y) dy.
By moment type estimate
(6.26) g(z,t) = zo(t™),
where the particular coefficient in o (t7!) does not depend on i. To summarize, we have
(6.27) [ (2, 8)] =19 (2,8) < g (2.8) = ot

We return to equation (6.24). Now we restricted on B (1) X [¢, T] and try to obtain estimate
not depend on index i. Now we define

LD (z,t) = u® (z,t) + 2Tt sup g(x,1)
B(r)x[e,T]

so that L (z,t) satisfy
(6.28) SLO (2,t) — ALY (z,t) 0.

Applying mean value theorem (Theorem 1.2 in [LT]) to function L® (x,t), we have

. Ve l, T
L B (e (08) ) (@r31)}

B:((1-0)r)x[e,T] )
X [T ds [y o IO (g,5) i (9) + (1 -+ 2) sup LO ().
B:(r)

Let B. (r),du, (y) denote the ball with radius r and volume element which is respected to
metric h.. The above inequality also means

. Ve l,QT
sup u® < O { 57~)%"+3 S/E?r) ) (rﬁ coth (7“\?) + 1) exp (C’Ns%T)}
B:((1-9)r)x[€e,T]

(6.29) ><f0 dsz (y,s)du, (y)

+O+fﬁwmu<( €) + (L+er)e?e’ “sup g (z,¢).
Be(r) Be(r)

We only need to estimate the first term of (6.29) below, since the other terms are bounded.
We define

= [y, He (z,y,t) ||| () dpee ()
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and again we have

; i i .
(6.30) L9 (y,5) < LY (y,5) + 27 suppyper 9 (@,1) < LY (y, 5) + e2e” (Rz )

Now the first term of (6.29) is estimated by using (6.30) and Lemma 6.5 as following

Voo JBam) LY (y,t) du, (y)
(6.31) < levos ar) fBoe 4r) HP S” ) dpse ()
Cm gt S s2 7 52
+ Cme™m s [0 <7g + T) exp (‘m) Vet S 0 1975 (W) e (9) d (7) :

The integral [ 1/7S|| (y) dps. (y) inside both terms in (6.31) are estimated by as-
sumption (6.2) and is controlled by quantity that not depend on i. Hence (6.29) and (6.31)
imply

) < C (6,7, T, m, p0S)
sup Ut ~ Er,d,n,p

(6.32) Be((1—6)r)x[e,T]

and
(6.33) MAaXB, (r)x[e,T] trhn,(f) (r,t) < C (5, r,T,n, p(i)S) .

Now the interior Schauder estimate can be applied to extract a convergent subsequence
n,(f,z — 1@ that satisfies the CR Lichnerowiz-subLaplacian heat equation on [0, 7. Note that
trpn® (z,0) = u® (,0), and by uniqueness of bounded sub-Laplacian heat solution (from

lemma 6.6) we actually have
tran® (z,t) = u' (z,1).
By (6.24), (6.27), (6.32) and Schauder estimates, there is a subsequence u() — u and
n'%) — n in any fixed compact subset with an arbitrary chosen Holder norm (by choosing

B, large for sweetsop domain, see appendix). Note in (6.27) as i goes to infinity we can
conclude VyVru (z,t) = 0 and similarly Vyu (z,t) = 0 and V1 (z,t) = 0 by using that

Hnéﬂ is a subsolution of sub-Laplacian heat equation as follows

(5 — ) Hngf) (2Ra5u37M005 — (RopToas + Raafloys)Nocehachea) < 0.

1
n§)

Here we use the facts that bisectional curvature is nonnegative and vanishing torsion. More-
over, requirement for applying maximum principle is garanteed by similar argument as (6.25),
we have

(6.34) ‘ Q

Mo

(2,8) <C [p(x,y,8) [Vpl S (y)du(y) < go(t™) .

As i goes to infinity, n, = 0. However, by now we do not know yet through the subse-
quence the two functions tr,n (z,t) and u (z,t) are the same even they have the same initial
condition. One regards both w (z,t) and tr,n (x,t) as solutions of Laplacian heat equations
associated to adapted metric (due to Vyu (x,t) = Vrtryn (z,t) = 0), and the manifold are
seen as Riemannian manifold with Riemannian curvature bounded below by —E— (Theo-
rem 4.9 in [CC1]). Now by the uniqueness of nonnegative Laplacian heat solution ([D]) on
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complete manifold with Riemannian Ricci curvature bounded below, we can conclude that
u(z,t) =tryn (z,1).

Note that u is the unique sub-Laplacian heat solution with Vru (x,t) = 0, and since any
such v we can find a sequence of u(® that satisfy moment type estimates converge to w.
Hence u satisfy the moment type estimate.

(ii) Step 2 : Monotonicity of tu : By our assumptions on Ric, and the upper bound
of n(x,t) by u(z,t) = o(t™1), (6.17), (6.18) and (6.19) in Theorem 6.3 are satisfied. Hence
by Lemma 6.3 and (6.21), tr,n satisfy

(6.35) u; + (0 A0, + conj) ¢+ % > 0.

In the following we are going to prove the mixed terms (9 Ad, + conj) ¢ of (6.35) vanishing
so the monotonicity

(6.36) (tu), >0
follows. Hence
tu(z,t) =0,
for any = and ¢ > 0. The flatness then follows from u(z,0) = 0.

In fact, we first define 0@ := Adyn™ (note n® = ﬁ(é(i)). Then direct calculation shows

that , ,

(2 - a) 02| < =2 vl
We integrate on both sides over €2, and apply Dirichlet condition (using boundary regularity
in Proposition 6.1). After taking u, — oo, we have

631 2t Ly [0 () s < oy 0 (O di = o 1o Ric]
Due to ||0(i) H (x,t) < Hvbn@‘)” (x,t), (6.37) and assumption (6.2) we have for some a’ > 0,
(6.38) fg S e~a'r? o] (x,5) duds < oc.

By Lemma 6.4, and direct calculation shows that

(8- 2) 09 1) < [of

SinceHa((f) H < HVnéi)H and Hn((]i) H (z,t) satisfy 6.34, by Schauder estimates [Si] we have for

< HVn(()i) < ¢ for any ¢ > nz. This shows

any € > 0, there exists nz; > 0 such thatHa((f)
that for any (x,t) € [0,7)
(2 — Ay) ||oD| (z,t) + e f2 < 0.
We define v (z, ) as follow
v (2,8) = [y 0 (2,9,1) [[Ady (09 Ric) || (y) dpu () -
Duo to (6.38) and maximum principle we have

|o@]| (z,) + e"*& < 0D (z,t) 4+ " te.
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Since torsion is vanishing, it implies 0,Ric = 0 and by nonnegativity of Ricci curvature it
follows that

(6.39) 1A3, (0O Ric)[| () < Xy, S )

Similarly as (6.26), (6.39) gives that v) — 0 uniformly on any compact subset as i — oo.
Since ¢ is arbitrary, we have

o]l (z,t) = 0.
Finally, as a result we have (tu), > 0 and then u = o (¢7!) . This completes the proof. O

APPENDIX A.

In this appendix, we construct "nice" domains to avoid the possibility of the bad regularity
for heat solutions in the case of degenerated parabolic systems. In fact, we will give a proof
on existence and regularity result for (1,1)-form ¢ of the Lichnerowicz-subLaplacian heat
equation. In the proof of main theorem, one required some regularity of the heat solution in
order to prove the mixed terms (9; A, + conj) ¢ of (6.35) vanishing ( then the monotonicity
follows). While we construct heat solution on complete manifolds with exhaustion domains,
we need the interior regularity at least C** (Q,) and boundary regularity as continuous
function in C (Qu) This requirement are needed for Arzela Ascoli theorem and integration
by part in (6.37). In semigroup method, better regularity of evolution equation comes from
the regularity of infinitesimal generator.

We denote C** (2, Ab1) as C?* sections of A'! on bounded domain Q. In our case, it is
Ap on Banach space C*® (Q, AY)YNnC (Q, Al’l). Note Ay = —% (Db + Eb). Here we denote
u as solution of following Dirichlet problem

for g € C* (Q, AY!). First we state some results :
Theorem A.1 (Kohn). Let M be a strictly pseudoconvex CR (2n+ 1)-manifold. If1 < q <
n — 1, then ||gz§||2% < C (v, ¢) + Hngg] for ¢ € C° (A%9). |||, stands for the L* Sobolev

norm of order s.

Remark A.1. 1. From the hypothesis in above theorem it requires n > 2. Whenn =1, one
refers to [J1].

2. Even though the operator O, is not Ay, in [J2] (see p.146) they actually prove the
case for a« = 0. Moreover, we have Ay = L, with a« = 0 up to lower order terms. Here
ﬁa = —Ab + iaT'.

The following is the interior and boundary regularity result by Jerison [J1].

Theorem A.2. Let U be the open subset of M containing no characteristic points of OS.
If ¥, € C5° (U), ¥ = 1 in the neighborhood of the support of ¢, and u satisfies (A.1) with
Vg € g (Q,A%), then p¢ € Tgis (2,A%) and

¢8I, < e (I¥glly, + lwoll:)



72

When an isolated characteristic boundary point occurs, Jerison proved the regularity result
when the neighborhood have strictly convexity property. The convexity is defined by Folland-
Stein local coordinates © (p, —) : U — H", and the boundary near point p is corresponding
to graph £ = >_ ;@2 + 3,32 + e (Z,7), where e (2, §) = O (|Z|° + [§]’). Strictly convex means
i, B; > 0 (see eq. (7.4) and A.3 in [J2]). In the following we state the theorem in the form
we want. Reader who is confused can refer to theorem 7.6, Proposition 7.11, and Corollary
10.2 in [J2].

Theorem A.3. Let p be an isolated characteristic point on 0N and in some neighborhood U,
of p the geometry U,NSY is like the domain {(:L’, y,t): M, (|£L‘|2 - |y[2) < t} in the Heisenberg
group, where M, a positive number . Then ¢¢ € I'gio (Q, Ao’q), where the best B depends on
M.. Moreover, as M. /' oo, one can choose 3 / 0.

Remark A.2. In Theorem A.3, one required g € I's (Q,Ao’q) for B8 > 2. Moreover, 5 has
upper bound B, — 2 , where (3, is an index related to the geometry of the boundary. In [J2],
they proved M. ,/ oo, then 3, /* co.

In order to construct a C*“ Lichnerowitz-subLaplacian heat solution, we need the exhaus-
tion domain which satisfy the property above. In the following we prove that it is possible
by perturbing the boundary of exhaustion domain.

Theorem A.4. For any given positive number M., there exists exhaustion domains €1, such
that 092, consist only isolated characteristic points with property as in Theorem A.3 with
gwen M.,.

Proof. We construct the exhaustion domain with smooth boundary arbitrarily. Since 0€,, is
compact, we define =, the set consisting all the characteristic points. Then the closure of =,
is compact. At each point there exist coordinate V,, such that we can express the boundary
asr(z,t) =t —q(z) +e(x,y) in By (g,) for some e, depend on p, where ¢ (z) = a;z7 + 0,4
for some real numbers «;, 3;. Since injective radius (with respect to some adapted metric)
is uniformly bounded below on 02, €, can be chosen to not depend on p but i only. These
Folland-Stein coordinate neighborhoods form an open covering for Z,,.

Now we claim there is a small modification to boundary so that E“ contains only isolated
characteristic points.

Assume B,, (¢) are the covering of =,, we can choose £; < g5 < £ such that B, (1) are
still a covering of éu- We start at point p;. First we deform the graph in the coordinate of
B,, (€1) to plane t = 0 and smoothly attached to graph on 0B,, (¢2). Under the deformation
we keep point p; as the only characteristic point. This is possible by noticing that we only
need to take ¢ (z) into consideration ( because this term dominate all the other inside small
ball. ) and we only need to consider the case in the Heisenberg group with graph t = ¢ (z)
in By, (¢). We modify ¢ (z) into new one ¢ (z) by define ¢ (z) = o |aX q(z) in B, (¢1) and

z|=e9

¢ (]z],0) in By, (e2) \ By, (€1) where ¢ (|2], ) is a smooth monotone function in |z| for each 6
such that the function smoothly attached to the value ¢ (2) on 0B, (¢2) and G (z) = ¢ (2) on
By, (6) N By, (€2). This modification clearly imply the origin is the only characteristic point

in B,, (¢1). Moreover, we can choose ¢ (|z|, ) very steep so that all the point (z,q(z)) for
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z € By, (e2) \ (0,0) are noncharacteristic. We define the new domain as €, ;. Specifically,
Q1 ={Q\By, (2)} U (M N{(2,t) : t > qG(2) — R(z,t) for z € By, (e2)}) .

Then we continue the same process on p,, and the new domain is €),5. Observe that
the process do not create new characteristic points but eliminate all the characteristic point
inside B,, (¢2) except p;. Continuing this process we are able to deform domain 2, into new
one that only consist isolated characteristic points on the boundary with M. = 0.

To modify M, into any value we want is easier. One can do the same process by deforming
the graph into parabolic. 0]

For convenience, we call the domain in above theorem as sweetsop domain.

Remark A.3. The above theorem can be simplified if we can construct strictly convexr domain
in M. But the existence to this kind of exhaustion domain isn’t known yet.

We recall theorems from semigroup method. For the definition of analytic semigroup,
one can refer to definition 12.30 in [R] ([P]). We cited the characterization of infinitesimal
generator of analytic semigroups. Notation here X is Banach space and A is operator defined
on X. Note A can be unbounded operator A : D (A) — X, where D (A) is a subset in X
such that Azr can be defined. As before, we denote I's the Lipschitz classes associated to
nonisotropic distance (refered [J2]) and I'g (2, A%') the restriction to Q of sections of A
with coefficients in I's (©2). We denote ||||rﬁ the norm of Banach space I'z (2, A'), and
R (A) as the inverse operator of Ay := A — Al as A, is one-to-one. The resolvent set of the
operator A is the subset of C that R, (A) exists, bounded, and the domain is dense in X.
When we apply, we let X = T3 (Q,A") and A = Ap. Here we state general theorems for
following evolution systems

W= Au+ f
where f € X.

Theorem A.5. ([R, Theorem 12.31]) A closed, densely defined operator A in X is the
generator of an analytic semigroup if and only if there exists w a real number such that the

half-plane Re\ > w is contained in the resolvent set of A and, moreover, there is a constant
C such that

C
A2 Ry (A < ———
( ) H /\( )”—|)\_w|
for ReA > w and ||.|| is the norm of X.
Theorem A.6. ([R, Theorem 12.33]) Let A be the infinitesimal generator of an analytic

semigroup and assume that the spectrum of A is entirely to the left of the line Re\ = w.
Then there exists a constant M such that

%) < Mest,

where ||.|| is the norm of X.
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One can refer to section 7.1 in [P] or page 421 in [E| for the application of semigroup
theory for A is a strong elliptic operator. In our case, the missing boundary regularity is
replaced by theorem A.3 (refer to [GV], [GV2]). Then one can follow Stewart [SH] and
consider Holder spaces as interpolation space [LA] to obtain the resolvent estimates A.2. As
a result, the regularity of the parabolic systems follows by theorem A.6.

In conclusion, we are able to choose exhaustion domain with /3, large enough, then follow
theorem above, we can choose 3 large enough to make sure the function space X is contained

in C%°,

This is possible by relation C# C 'y € C#/2 as in 20.5, 20.6 of [FS]. This completes

the proof of Proposition 6.1.
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