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摘 要      

    這篇文章包含三大部分，第一部分證明矩陣形式的 Li-Yau-Hamilton Harnack 不等式。第

二部份延續第一部分的工作，推廣至(1,1)-form 形式的 Li-Yau-Hamilton Harnack 不等式。第三

部份將應用這不等式証明柯西黎曼上的 Gap 定理。 

 

關鍵字：擬埃爾米特，Li-Yau-Hamilton，Gap 定理，Harnack 不等式 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Abstract

In the �rst part of thesis, we �rst derive the CR analogue of matrix Li-Yau-Hamilton
inequality for a positive solution to the CR heat equation in a closed pseudohermitian (2n+1)-
manifold with nonnegative bisectional curvature and bitorsional tensor. We then obtain the
CR Li-Yau gradient estimate in a standard Heisenberg group. Finally, we extend the CR
matrix Li-Yau-Hamilton inequality to the case of Heisenberg groups. As a consequence, we
derive the Hessian comparison property in the standard Heisenberg group.
In the second part, we study the CR Lichnerowicz-Laplacian heat equation deformation of

(1; 1)-tensors on a complete strictly pseudoconvex CR (2n+1)-manifold and derive the linear
trace version of Li-Yau-Hamilton inequality for positive solutions of the CR Lichnerowicz-
Laplacian heat equation. We also obtain a nonlinear version of Li-Yau-Hamilton inequality
for the CR Lichnerowicz-Laplacian heat equation coupled with the CR Yamabe �ow and
trace Harnack inequality for the CR Yamabe �ow.
In the last part, by applying a linear trace Li-Yau-Hamilton inequality for a positive

(1; 1)-form solution of the CR Hodge-Laplace heat equation and monotonicity of the heat
equation deformation, we obtain an optimal gap theorem for a complete strictly pseudocovex
CR (2n+1)-manifold with nonnegative pseudohermitian bisectional curvature and vanishing
torsion. We prove that if the average of the Tanaka-Webster scalar curvature over a ball of
radius r centered at some point o decays as o (r�2), then the manifold is �at.
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2. Introduction

We brie�y introduce our works and results.
In the seminal paper [LY], P. Li and S.-T. Yau established the parabolic Li-Yau Harnack

estimate for the positive solution u(x; t) of the time-independent heat equation

(2.1)
@u (x; t)

@t
= �u (x; t)

in a complete Riemannian l-manifold with nonnegative Ricci curvature. Here � is the
Laplace-Beltrami operator. Later in [H2], Richard Hamilton extended the Li-Yau estimate
to the full matrix version of the Hessian estimate of u under the stronger assumptions that
M is Ricci parallel and of nonnegative sectional curvature. Furthermore, Hamilton ([H1])
proved the matrix Harnack inequality for solutions to the Ricci �ow

(2.2)
@gij (x; t)

@t
= �2Rij (x; t)

when the curvature operator is nonnegative. This inequality is called the �Li-Yau-Hamilton�
type estimates. Since then, there are many additional works in this direction which cover
various di¤erent geometric evolution equations such as the mean curvature �ow ([H2]), the
Kähler-Ricci �ow ([Ca]), the Yamabe �ow ([C]), etc.
On the other hand, the Kähler-Ricci curvature (1; 1)-tensor of a Kähler-Ricci �ow solu-

tion satis�es a Lichnerowicz-Laplacian heat equation. In general, the Hodge-Laplacian heat
equation on symmetric (p; p)-tensors is a geometrically interesting system and has been exten-
sively studied since the original works of Hodge and Kodaira ( [Mo] and references therein).
For instances, we refer to the Lichnerowicz-Laplacian heat equation on (1; 1)-tensors and the
Hodge-Laplacian heat equation on (p; p)-tensors as in [NN].
Along this line with method of Li-Yau gradient estimate, H.-D. Cao and S.-T. Yau ([CY])

studied the heat equation

(2.3)
@u (x; t)

@t
= Lu(x; t)

in a closed l-manifold with a positive measure and a subelliptic operator with respect to
the sum of squares of vector �elds L =

Ph
i=1X

2
i � Y; h � l with Y =

Ph
i=1 ciXi where

X1; X2; :::; Xh are smooth vector �elds satisfying Hörmander�s condition : the vector �elds
together with their commutators up to �nite order span the tangent space at every point of
M: Suppose that [Xi; [Xj; Xk]] can be expressed as linear combinations of X1; X2; :::; Xh

and their brackets [X1; X2]; :::; [Xl�1; Xh]: They showed that the gradient estimate for the
positive solution u(x; t) of (2.3) on M � [0;1):
In the �rst part of this paper, we focus on the CR Li-Yau-Hamilton type gradient estimate

for the positive solution u(x; t) of the CR heat equation

(2.4)
@u (x; t)

@t
= �bu (x; t) :
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and for the positive symmetric (1; 1)-form �(x; t) of CR Lichnerowicz-Laplacian heat equation

(2.5)
@

@t
���� = 4

�
�b���� + 2R��
����
�� � (R
�����
 +R��
�
��)

�
:

On the other hand, we are also interested in the coupled heat equation. Let �(t) be a family
of smooth contact forms and J(t) be a family of CR structures on (M3; J0;��) with J(0) = J0
and �(0) = ��. In the paper of [CKW], we consider the following torsion �ow which is the
CR analogue of the Hamilton Ricci �ow:

(2.6)
�

@
@t
J = 2AJ;�;

@
@t
� = �2R�:

on M � [0; T ) with J(t) = i�1 
 Z1 � i�1 
 Z1 and AJ;�(t) = A11�
1 
 Z1 + A11�

1 
 Z1:
In particular if the initial torsion is vanishing, the torsion �ow (2.6) is equivalent to the CR
Yamabe �ow

(2.7)
�

@
@t
� (t) = �2R (t) � (t) ;

� (0) =��;

in a closed CR 3-manifold. We will study the Li-Yau-Hamilton inequality for the coupled
CR Yamabe �ow as well.
Finally, we recall some de�nitions as followings.

De�nition 2.1. Let (M;J; �) be a closed pseudohermitian 3-manifold. We call a CR struc-
ture J spherical if Cartan curvature tensor Q11 vanishes identically. Here

Q11 =
1

6
W11 +

i

2
WA11 � A11;0 �

2i

3
A
11;

_
11
:

Note that (M;J; �) is called a closed spherical pseudohermitian 3-manifold if J is a spherical
structure. We observe that the spherical structure is CR invariant and a closed spherical
pseudohermitian 3-manifold (M;J; �) is locally CR equivalent to (S3; bJ;b�):
De�nition 2.2. Let (M;J; �) be a closed pseudohermitian (2n+1)-manifold with � = ker �.
A piecewise smooth curve 
 : [0; 1] ! M is said to be a Legendrian curve if _
(�) 2 �
whenever _
(�) exists. The length of 
 is then de�ned by

l(
) =

Z 1

0

(h _
(�); _
(�) iL�)
1
2d� :

The Carnot-Carathéodory distance dcc between two points p; q 2M is de�ned by

dcc(p; q) = inf fl(
)j 
 2 Cp;qg ;
where Cp;q is the set of all Legendrian curves which join p and q.

2.1. CR Li-Yau Gradient Estimate and Harnack Inequality. Let u be the positive
solution of (2.4) and denote

f (x; t) = lnu (x; t) :

Then f (x; t) satis�es the equation

(2.8)
�
�b �

@

@t

�
f (x; t) = � jrbf (x; t)j2 :
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We observe that one of di¢ culties is to deal with CR Bochner formula which involving a
term hJrbf; rbf0i that has no analogue in the Riemannian case. In order to overcome this
di¢ culty, we introduce a new scalar Harnack quantity

(2.9) F (x; t; a; c) = t
�
jrbf j2 (x) + aft + ctf 20 (x)

�
;

with f = lnu by adding an extra term tf20 to jrbf j2 + aft which was appeared in Li-Yau
estimate ([LY]). Then one can derive CR versions of Li-Yau gradient estimates and classical
Harnack inequality.

Theorem 2.1. ([CKL1]) Let (M; J; �) be a closed pseudohermitian (2n + 1)-manifold.
Suppose that

2Ric (X;X)� (n� 2)Tor (X; X) � 0
for all X 2 T1;0 � T0;1: If u (x; t) is the positive solution of�

�b �
@

@t

�
u (x; t) = 0

with
[�b; T]u = 0

on M � [0; 1) : Then f (x; t) = lnu (x; t) satis�es the following subgradient estimate

(2.10)
�
jrbf j2 � (1 +

3

n
)ft +

n

3
t(f0)

2

�
<
( 9
n
+ 6 + n)

t
:

When the manifold is complete noncompact, the proof of CR Li-Yau gradient estimate
(2.11) relies on the CR sub-Laplacian comparison property and the extra u0-growth property
with ju0j � C

t
u that has no analogue in the Riemannian case. However, both properties holds

in a standard Heisenberg group Hn which is �at and vanishing torsion. Then we are able to
derive the following CR Li-Yau gradient estimate on Hn:

Theorem 2.2. ([CFTW]) Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg
group. If u(x; t) is the positive solution of the CR heat equation (2.4) on Hn � [0;1). Let
' = lnu; for any � < �1; then there exists a positive constant C depending on � such that

(2.11) jrb'j2 + �'t + t'20 � C
t
:

By applying Theorem 2.2, we have the following CR Liouville-type theorem for a positive
pseudoharmonic function u on (Hn; J; �) which recaptured the Liouville theorem due to
Chang-Kuo-Tie [CKT] and Koranyi and Stanton ([KS]) by a di¤erent method.

Corollary 2.3. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x; t) is the positive smooth function with �bu = 0; then u(x; t) is constant. That is, there
does not exist any positive nonconstant pseudoharmonic function in Hn.

By using the method of CR Li-Yau gradient estimate ([LY], [CKL1]) and CR Bochner
formula, we derive a CR gradient estimate and CR Harnack inequality for the positive
solution of the CR heat equation (2.4) in (2n+ 1)-dimensional Heisenberg group.
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Corollary 2.4. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x; t) is the positive solution of the CR heat equation (2.4) on Hn � [0;1) ; we have the
Harnack inequality

(2.12) u(x1;t1)
u(x2;t2)

�
�
t2
t1

�C
exp

�
dc(x1;x2)2

2(t2�t1)

�
for any x1; x2 in Hn and 0 < t1 < t2 < 1; where dc(x1; x2) is the Carnot-Carathéodory
distance between x1 and x2.

As a consequence of Corollary 2.4 and [CY], we have the following upper bound estimate
for the heat kernel of (2.4).

Corollary 2.5. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group and
H(x; y; t) be the heat kernel of (2.4) on M � [0;1). Then for some constant � > 1 and
0 < � < 1; H(x; y; t) satis�es the estimate

(2.13) H(x; y; t) � C(�)�V � 1
2 (Bx(

p
t))V � 1

2 (By(
p
t)) exp

�
�d

2
cc(x; y)

(4 + �)t

�
with C(�)!1 as �! 0.

Once we have the upper bound estimate for the heat kernel and the sub-laplacian com-
parison property, then by applying the arguments of Li-Tam as in [LT] or [Li], we have the
following mean value inequality.

Corollary 2.6. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group and g
be subsolution of the CR heat equation such that�

@

@t
��b

�
g (x; t) � 0:

Then for some constant C depend on �; � ; �, such that 0 < � < 1; 0 < � < T , 0 < � < 1
2
; the

following inequality holds for any � > 2
p
T ;

(2.14) sup
Bp((1��)�)�[�;T ]

g � C

Z T

(1��)�

Z
Bp(�)

g (y; s) dyds:

2.2. CR Matrix Li-Yau-Hamilton Inequality. Let u(x; t) be the positive solution of
the CR heat equation (2.4). For the CR Li-Yau gradient estimate as in the paper [CKL1],
we observe that one of di¢ culties is to deal with CR Bochner formula which involving a
term hJrbf; rbf0i that has no analogue in the Riemannian case. In order to overcome this
di¢ culty, we introduce a new scalar Harnack quantity F = t[jrbf j2+�ft+tf20 ] with f = lnu
by adding an extra term tf20 to jrbf j2 + �ft which was appeared in Li-Yau estimate ([LY]).
Now we want to �nd the right quantity for the CR matrix Li-Yau-Hamilton inequality.

By comparing the Harnack quantity in [CN] in the case of Kähler manifolds, we de�ne the
matrix Harnack quantity

(2.15) N��� =
1

2
(u��� + u���) + 2

u

t
h��� � b

u�u��
u

� at
ju0j2

u
h���
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by adding an extra term F := �at ju0j
2

u
h��� in which positive constants a and b to be deter-

mined later (say a = 1
24
and b = 1

4
).

De�nition 2.3. ([GL]) De�ne the purely holomorphic Hessian operator P��� :

P���' := �2i(A�
'
)�
and the purely holomorphic Poisson operator Q :

Q' := h�
��(P���') = �2i(A�
'
)�

for any smooth function ': Note that P���' = 0 = Q' for any smooth function ' if A�� = 0
on M:

Then, based on the following key estimate, we have Theorem 2.7.

Lemma 2.1. Let u(x; t) be the positive solution of the CR heat equation (2.4). Then
1
2
(u��� + u���) satis�es the following :

1

2

�
@

@t
��b

��
u��� + u���

�
= 2R��
���u
�� �R���u��� �R���u��� + C���;

where
C��� := i

�
A
�;��u�
 � A�
��;�u


�
h��� + i

�
A
�u�
�� � A�
��u�


�
h���

+in
�
A�
��u�
 � A�
u�
��

�
+ in

�
A�
��;�u
 � A
�;��u�


�
:= �(ReQu)h��� + n(ReP���u):

Note that trC��� = h�
��C��� = 0: In particular we have C11 = 0 for n = 1: In addition if the

positive solution u satis�es P���u = 0 which is the case when the torsion is vanishing, then
u��� satis�es the following CR Lichnerowicz-Laplacian heat equation ([CCF]) :�

@

@t
��b

�
u��� = 2R��
���u
�� �R���u��� �R���u���:

Hence we have the following CR analogue of matrix Li-Yau-Hamilton inequality for any
positive solution u to (2.4).

Theorem 2.7. ([CFTW]) Let M be a closed pseudohermitian (2n+ 1)-manifold with non-
negative bisectional curvature and nonnegative bi-torsional tensor. Let u be the positive
solution of the CR heat equation (2.4). In addition if the positive solution u satis�es the
purely holomorphic Hessian operator P���u = 0: Then

(2.16) (u��� + u���) +
1

2
[(u�V�� + u��V�) + uV�V��]�

t

12

ju0j2

u
h��� +

4

t
uh��� � 0

for t > 0 and any vector �led V = V� of type (1; 0) onM: Here P��� is the purely holomorphic
Hessian operator (De�nition 2.3). In particular, the CR matrix Li-Yau-Hamilton inequality
(2.16) holds in a closed pseudohermitian (2n+ 1)-manifold of nonnegative bisectional cur-
vature and vanishing torsion. If we choose the optimal V = �ru=u and take the trace of
(2.16), we recapture the CR Li-Yau gradient estimate (2.10).
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When the manifold is complete noncompact, we will need to use the CR Li-Yau Harnack
inequality (2.12) and Li-Tam mean value inequality (2.14) in the proof of the CR matrix
Li-Yau-Hamilton inequality (2.16). However, both estimates hold in a standard Heisenberg
group Hn which is �at and vanishing torsion. Then as a consequence of Theorem 2.7, we
are able to derive the following CR matrix Li-Yau-Hamilton inequality on Hn:

Theorem 2.8. ([CFTW]) Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg
group. If u(x; t) is the positive solution of the CR heat equation (2.4) on Hn� [0;1). Then
the CR matrix Li-Yau-Hamilton inequality (2.16) holds.

By applying Theorem 2.8 to the heat kernel H(x; y; t) with V = �rH
H
, we have the

following complex Hessian comparison theorem for r on Hn. Such a Hessian comparison
property seems to be new in the standard (2n+ 1)-dimensional Heisenberg group Hn:

Corollary 2.9. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group. Then
in the sense of distribution, we have

[(r2(x))�� + (r
2(x))��] � (16 + C0)h��(x)

for some constant C0. In particular, we recapture the sub-Laplacian comparison property

�br
2(x) � (16 + C0)n

in the Heisenberg group.

2.3. CR Linear Trace Li-Yau-Hamilton Inequality and Gap Theorem. We now
consider the CR Hodge-Laplacian

�H = �
1

2
(�b +�b)

for Kohn-Rossi Laplacian �b. For any (1; 1)-form �(x; t) = ����
� ^ ��; we study the CR

Hodge-Laplacian heat equation on M � [0; T )
@

@t
�(x; t) = 4�H�(x; t)

in which connects to the existence problem of pseudo-Einstein CR (2n + 1)-manifolds with
n � 2. It follows from the CR Bochner-Weitzenbock Formula that the CR parabolic equation
above is equivalent to the CR analogue of Lichnerowicz-Laplacian heat equation (2.5).
De�ne the Harnack quadratic by

(2.17)

Z (x; t) (V ) := k1

�
1

2

�
(div �)�;�� + (div �)��;�

�
+ (div �)� V�� + (div �)� V�� + V��V�����

�
+
H

t

for any vector �eld V 2 T 1;0 (M) ; H = h������ and k1 to be determined later. Moreover,
����;0 is denoted the component of covariant derivative of the tensor � with Reeb vector �eld
T:
The following is linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-Laplacian

heat equation.
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Theorem 2.10. ([CCF]) Let (M;J; �) be a closed strictly pseudoconvex CR (2n+1)-manifold
with nonnegative bisectional curvature and vanishing torsion. Let ���� (x; t) be a nonnegative
symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-Laplacian heat equation (2.5) on
M � [0; T ) and ����;0 (x; 0) = 0 at t = 0. In additional if M is complete noncompact, we
assume that there exists a constant a > 0 such thatZ T

�

Z
M

e�ar
2 k� (x; t)k2 d�dt <1

and Z T

�

Z
M

e�ar
2 krT� (x; t)k2 d�dt <1;

where r (x) is the Carnot-Carathéodory distance from a �xed point o and any � > 0. Then

Z (x; t) � 0;
for 0 < k1 � 8:
Then, based on the linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-

Laplacian heat equation. Lichnerowicz-Laplacian heat equation and then CR monotonicity
of heat equation deformation of positive (1; 1)-forms, we have the following CR gap Theorem.

Theorem 2.11. ([CF]) Let M be a complete noncompact strictly pseudoconvex CR (2n+1)-
manifold with nonnegative bisectional curvature and vanishing torsion. Then M is �at if

(2.18)
1

Vo (r)

Z
Bo(r)

R (y) d� (y) = o
�
r�2
�
;

for some point o 2 M: Here R (y) is the Tanaka-Webster scalar curvature and Vo (r) is the
volume of the ball Bo (r) with respect to the Carnot-Carathéodory distance. As a consequence
if M is not �at, then

lim inf
r�!1

r2

Vo (r)

Z
Bo(r)

R (y) d� (y) > 0

for any o 2M:

2.4. The Coupled CR Yamabe Flow. We �rst study the following time-dependent CR
heat equations with potentials

(2.19)
@u

@t
= 4�bu� cRu

evolving by the CR Yamabe �ow onM� [0; T ). Here �b is the time-depending sublaplacian
and R(t) is the Tanaka-Webster scalar curvature with respect to the contact form � (t). We
will derive di¤erential Harnack estimates for positive solutions of (2.19) for c = �2:
We also present its application of Theorem 2.7 to obtain the nonlinear version of Harnack

inequality for CR Lichnerowicz-Laplacian heat equation (2.5) coupled with the CR Yamabe
�ow (5.15).
We expect our Harnack estimate will play an important role in the study of the CRYamabe

�ow. There are geometric quantities (for example the Tanaka-Webster scalar curvature)
which satisfy equation (2.20) under the CR Yamabe �ow in a closed CR 3-manifold. Indeed,
these estimates can be used for understanding the singular models of positive Tanaka-Webster
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curvature under the CR Yamabe �ow. In particular, this estimate should be useful in
understanding the Yamabe solitons which one expects to model �nite time singularities of
the CR Yamabe �ow.
Now we deal with c = �2 in (2.19). In particular, it follows that for u = R

(2.20)
@R

@t
= 4�tR + 2R

2:

Then we have the CR Li-Yau-Hamilton inequality of the Yamabe �ow (5.15). That is

Theorem 2.12. ([CCK]) Let (M;J;��) be a closed spherical pseudohermitian 3-manifold with
positive Tanaka-Webster curvature and vanishing torsion. Then under the CR Yamabe �ow
(5.15),

(2.21) 4
jrbRj2

R2
� Rt

R
� 1
t
� 0:

Furthermore, we get a subgradient estimate of logarithm of the positive Tanaka-Webster
curvature

jrbRj2

R2
� 1

4t
for all t 2 (0; T ):
Remark 2.1. 1. Let (M;J; �) be a closed pseudohermitian 3-manifold. We call a CR
structure J spherical if Cartan curvature tensor Q11 vanishes identically. Here

Q11 =
1

6
W11 +

i

2
WA11 � A11;0 �

2i

3
A
11;

_
11
:

Note that (M;J; �) is called a closed spherical pseudohermitian 3-manifold if J is a spherical
structure. We observe that the spherical structure is CR invariant and a closed spherical
pseudohermitian 3-manifold (M;J; �) is locally CR equivalent to (S3; bJ;b�):
2. If (M;J;��) is a closed pseudohermitian 3-manifold with �A11 = 0, then R0 (x; 0) = 0

by the CR Bianchi identity. In additional if (M;J) is spherical, then under the CR Yamabe
�ow (5.15), R0 (x; t) = 0 for all t.

By Chow connectivity theorem, there always exists a Legendrian curve joining any two
points p and q, so the distance is �nite. Now integrating (2.21) over (
(t); t) of a Legendrian
path 
 : [t1; t2] ! M joining points x1; x2 in M; we obtain the following CR Harnack
inequality for the positive Tanaka-Webster curvature under the CR Yamabe �ow.

Corollary 2.13. Let (M;J;��) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka-Webster curvature and vanishing torsion. Then under the CR Yamabe �ow (5.15),
we have for all points x1, x2 in M and times t1 < t2,

R(x1; t1) � (
t2
t1
)
64
63R(x2; t2) exp(

1

2
L);

where

L = inf



Z t2

t1

(R +
1

8
j _
j2J;�(t))dt

and the in�mum is taken over all Legendrian paths 
 with 
(t1) = x1 and 
(t2) = x2.
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Finally, in the papers of B. Chow and R. Hamilton [CH], L. Ni and L.-F. Tam [NT1]
proved the nonlinear trace Li-Yau-Hamilton inequality for the coupled the Ricci �ow and
Kaehler Ricci �ow, respectively. Here we present its application of Theorem 2.7 to obtain
the nonlinear version of Li-Yau-Hamilton inequality for CR Lichnerowicz-Laplacian heat
equation (2.5) coupled with the CR Yamabe �ow (5.15).

Theorem 2.14. ([CCF]) Let (M;J;
0

�) be a closed spherical pseudohermitian 3-manifold
with positive Tanaka-Webster curvature and vanishing torsion. Let �11 (x; t) be a positive
symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-Laplacian heat equation (2.5) coupled
with the CR Yamabe �ow (5.15) on M � [0; T ) and �11;0 = 0 for all t. Then

ZR := Z +RH � 0
on M � [0; T ) for k1 = 4. In particular, taking V = 0

2�b�11 + (R +
1

t
)H � 0

and

(2.22)
@

@t
�11 + 2(R +

1

t
)H � 0

with H = h11�11:

As a consequence of Theorem 2.14 with �1�1 = R1�1 = Rh1�1; we have the following trace
Harnack inequality for the CR Yamabe �ow (5.15) which turns out to be a special case of
the linear Harnack inequality for the CR Lichnerowicz-Laplacian heat equation (2.5) coupled
with the CR Yamabe �ow (5.15) on a closed strictly pseudoconvex spherical CR 3-manifold.
This is the same as (2.21).

Corollary 2.15. Let (M;J;
0

�) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka-Webster curvature and vanishing torsion. Then we have the following trace Harnack
inequality for the CR Yamabe �ow (5.15)

@

@t
(t2R) � 0:

Finally, we point out that, by applying Hamilton�s general method, one can obtain the
Harnack inequalities ([H1], [C]) to the CR Yamabe �ow.

Theorem 2.16. ([CCF]) Let (M;J;
0

�) be a closed spherical pseudohermitian 3-manifold with
positive Tanaka-Webster curvature and vanishing torsion. Then under the CR Yamabe �ow

(2.23)
@R

@t
+
2R

t
+ 2 hrbR; V iJ;� +

3

40
R kV k2J;� � 0

for any V 2 T 1;0 (M) :
It is our hope that the similar nonlinear trace Li-Yau-Hamilton (2.22) holds as well for

the torsion �ow (2.6) in a closed pseudohermitian 3-manifold.
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3. Preliminary

First we introduce some basic materials in a pseudohermitian (2n+1)-manifold (see [L1],
[L2] for more details). Let (M; �) be a (2n+1)-dimensional, orientable, contact manifold with
contact structure �. A CR structure compatible with � is an endomorphism J : � ! � such
that J2 = �1. We also assume that J satis�es the following integrability condition: If X
and Y are in �, then so are [JX; Y ]+ [X; JY ] and J([JX; Y ]+ [X; JY ]) = [JX; JY ]� [X; Y ].
Let fT; Z�; Z��g be a frame of TM
C, where Z� is any local frame of T1;0; Z�� = Z� 2 T0;1

and T is the characteristic vector �eld. Then
�
�; ��; ���

	
, which is the coframe dual to

fT; Z�; Z��g, satis�es

(3.1) d� = ih���
� ^ ��

for some positive de�nite hermitian matrix of functions (h���), if we have this contact struc-
ture, we also call such M a strictly pseudoconvex CR (2n+ 1)-manifold.
The Levi form h ; iL� is the Hermitian form on T1;0 de�ned by

hZ;W iL� = �i


d�; Z ^W

�
:

We can extend h ; iL� to T0;1 by de�ning


Z;W

�
L�
= hZ;W iL� for all Z;W 2 T1;0. The Levi

form induces naturally a Hermitian form on the dual bundle of T1;0, denoted by h ; iL�� , and
hence on all the induced tensor bundles. Integrating the Hermitian form (when acting on
sections) over M with respect to the volume form d� = � ^ (d�)n, we get an inner product
on the space of sections of each tensor bundle.
The pseudohermitian connection of (J; �) is the connection r on TM 
C (and extended

to tensors) given in terms of a local frame Z� 2 T1;0 by

rZ� = ��
� 
 Z�; rZ�� = ���

�� 
 Z��; rT = 0;
where ��� are the 1-forms uniquely determined by the following equations:

d�� = �� ^ ��� + � ^ ��;
0 = �� ^ ��;
0 = ��

� + ���
��;

We can write (by Cartan lemma) �� = A�
�

 with A�
 = A
�. The curvature of Webster-

Stanton connection, expressed in terms of the coframe f� = �0; ��; ���g, is
��

� = ���
�� = d!�

� � !�

 ^ !
�;

�0
� = ��

0 = �0
�� = ���

0 = �0
0 = 0:

Webster showed that ��� can be written

��
� = R�

�
����

� ^ ��� +W�
�
��
� ^ � �W�

����
�� ^ � + i�� ^ �� � i�� ^ ��

where the coe¢ cients satisfy

R������ = R������ = R������ = R������; W���
 = W
���:
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Here R



��� is the pseudohermitian curvature tensor, R��� = R


�
��� is the pseudohermitian

Ricci curvature tensor and A�� is the torsion tensor. Furthermore, we de�ne the bi-sectional
curvature

R�����(X; Y ) = R�����X�X�Y�Y��

and the bi-torsion tensor

T��(X; Y ) := i(A����X�Y� � A��X��Y��)

and the torsion tensor

Tor(X;Y ) := h�
��T��(X; Y ) = i(A���X�Y� � A��X��Y�)

for any X = X�Z�; Y = Y�Z� in T1;0:
We will denote components of covariant derivatives with indices preceded by comma;

thus write A��;
. The indices f0; �; ��g indicate derivatives with respect to fT; Z�; Z��g. For
derivatives of a scalar function, we will often omit the comma, for instance, u� = Z�u; u��� =
Z��Z�u� !�


(Z��)Z
u:
For a smooth real-valued function u, the subgradient rb is de�ned by rbu 2 � and

hZ;rbuiL� = du(Z) for all vector �elds Z tangent to contact plane. Locally rbu =P
� u��Z� + u�Z��. We also denote u0 = Tu.
We can use the connection to de�ne the subhessian as the complex linear map

(rH)2u : T1;0 � T0;1 ! T1;0 � T0;1

by
(rH)2u(Z) = rZrbu:

In particular,

jrbuj2 = 2u�u�; jr2
buj2 = 2(u��u�� + u��u��):

Also
�bu = Tr

�
(rH)2u

�
=
P

�(u��� + u���):

The Kohn-Rossi Laplacian �b on functions is de�ned by

�b' = 2@
�
b@b' = (�b + inT )' = �2'��

and on (p; q)-forms is de�ned by

�b = 2(@
�
b@b + @b@

�
b):

Next we recall the following commutation relations ([L1]). Let ' be a scalar function and
� = ���

� be a (1; 0) form, then we have

'�� = '��;
'��� � '��� = ih��'0;
'0� � '�0 = A��'��;
��;0� � ��;�0 = ��;�
A
� � �
A��;�
;
��;0�� � ��;��0 = ��;
A�
�� + �
A�
��;�;
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and
��;�
 � ��;
� = iA�
�� � iA���
;
��;���
 � ��;�
�� = ih��A�
���� � ih�
A������;
��;��
 � ��;�
� = ih�
��;0 +R�����
��:

Moreover for multi-index I = (�1; :::; �p) ; �J =
�
��1; :::; ��q

�
; we denote I(�k = �) =

(�1; :::; �k�1; �; �k+1; :::; �p) : Then

�I �J;�� � �I �J;�� = i
pP

k=1

�
�I(�k=�) �JA�k� � �I(�k=�) �JA�k�

�
�i

qP
k=1

�
�I �J(��k=�
)h��k�A

�

� � �I �J(��k=�
)h��k�A

�

�

�
;

and

�I �J;��� � �I �J;��� = ih����I �J;0 +
pP

k=1

�I(�k=
) �JR



�k ��� +
qP

k=1

�I �J(��k=�
)R
�


��k ���

�I �J;0� � �I �J;�0 = A����I �J;�� �
pP

k=1

A�k�;���I(�k=�) �J +
qP

k=1

A��;��k�I �J(��k=��):

4. CR Matrix Li-Yau-Hamilton Harnack Inequality

In the seminal paper [LY], P. Li and S.-T. Yau established the parabolic Li-Yau Harnack
estimate for the positive solution u(x; t) of the time-independent heat equation

@u (x; t)

@t
= �u (x; t)

in a complete Riemannian l-manifold with nonnegative Ricci curvature. Here � is the
Laplace-Beltrami operator. Later in [H2], Richard Hamilton extended the Li-Yau estimate
to the full matrix version of the Hessian estimate of u under the stronger assumptions thatM
is Ricci parallel and of nonnegative sectional curvature. Furthermore, Hamilton [H1] proved
the matrix Harnack inequality for solutions to the Ricci �ow when the curvature operator
is nonnegative. This inequality is called the �Li-Yau-Hamilton�type estimates. Since then,
there are many additional works in this direction which cover various di¤erent geometric
evolution equations such as the mean curvature �ow [H2], the Kähler-Ricci �ow [Ca], the
Yamabe �ow [C], etc.
Along this line with method of Li-Yau gradient estimate, H.-D. Cao and S.-T. Yau ([CY])

studied the heat equation

(4.1)
@u (x; t)

@t
= Lu(x; t)

in a closed l-manifold with a positive measure and a subelliptic operator with respect to
the sum of squares of vector �elds L =

Ph
i=1X

2
i � Y; h � l; with Y =

Ph
i=1 ciXi where

X1; X2; :::; Xh are smooth vector �elds satisfying Hörmander�s condition : the vector �elds
together with their commutators up to �nite order span the tangent space at every point of
M: Suppose that [Xi; [Xj; Xk]] can be expressed as linear combinations of X 1; X2; :::; Xh

and their brackets [X1; X2]; :::; [Xl�1; Xh]: They showed that the gradient estimate for the
positive solution u(x; t) of (4.1) on M � [0;1):
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Recently in the paper of [CKL1], we obtained the CR Cao-Yau type gradient estimate for
the positive solution u(x; t) of the CR heat equation

(4.2)
@u (x; t)

@t
= �bu (x; t)

in a closed pseudohermitian (2n + 1)-manifold (M;J; �) of nonnegative Tanaka-Webster
curvature and vanishing torsion. Here �b is the time-independent sub-Laplacian operator.
In this part, we will derive the following CR analogue of matrix Li-Yau-Hamilton inequality

for any positive solution u to (4.2).

Theorem 4.1. Let M be a closed pseudohermitian (2n+ 1)-manifold with nonnegative bi-
sectional curvature and nonnegative bi-torsional tensor. Let u be the positive solution of the
CR heat equation (4.2). In addition if the positive solution u satis�es the purely holomorphic
Hessian operator P���u = 0: Then

(4.3) (u��� + u���) +
1

2
[(u�V�� + u��V�) + uV�V��]�

t

12

ju0j2

u
h��� +

4

t
uh��� � 0

for t > 0 and any vector �led V = V� of type (1; 0) onM: Here P��� is the purely holomorphic
Hessian operator (De�nition 4.1):

Corollary 4.2. The CR matrix Li-Yau-Hamilton inequality (4.3) holds in a closed pseudo-
hermitian (2n+ 1)-manifold of nonnegative bisectional curvature and vanishing torsion.

Remark 4.1. If we choose the optimal V = �ru=u and take the trace of (4.3), we recapture
the following CR Li-Yau gradient estimate which was derived by Chang-Kuo-Lai in [CKL1]
and [CKL2] :

(4.4)
@

@t
u� 1

4

kruk2

u
� nt

12

ju0j2

u
+
4n

t
u � 0:

When the manifold is complete noncompact, we will need to use the CR Li-Yau Harnack
inequality (4.29) and Li-Tam mean value inequality (4.32) in the proof of the CR matrix
Li-Yau-Hamilton inequality (4.3). However, the proof of both inequalities rely on CR Li-Yau
gradient estimate (4.5). We refer to [CN] for some details.
As shown in section 4:2; the proof of CR Li-Yau gradient estimate (4.5) relies on the CR

sub-Laplacian comparison property (4.27) and the extra u0-growth property (see appendix
in [CFTW]) with ju0j � C

t
u that has no analogue in the Riemannian case. In particular,

both properties holds in a standard Heisenberg groupHn which is �at and vanishing torsion.
However, both properties are wild open in a general complete noncompact pseudohermitian
(2n+ 1)-manifold.
Then we are able to derive the following CR Li-Yau gradient estimate on Hn:

Theorem 4.3. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x; t) is the positive solution of the CR heat equation (4.2) on Hn � [0;1). Let ' = lnu;
for any � < �1; then there exists a positive constant C depending on � such that

(4.5) jrb'j2 + �'t + t'20 � C
t
:
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By applying Theorem 4.3, we have the following CR Liouville-type theorem for a positive
pseudoharmonic function u on (Hn; J; �) which recaptured the Liouville theorem due to
Chang-Kuo-Tie ([CKT]) and Koranyi and Stanton ([KS]) by a di¤erent method.

Corollary 4.4. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x; t) is the positive smooth function with �bu = 0; then u(x; t) is constant. That is, there
does not exist any positive nonconstant pseudoharmonic function in Hn.

From the previous discuss and Theorem 4.1, we have the CR matrix Li-Yau-Hamilton
inequality in (Hn; J; �) as in section 4:2:

Theorem 4.5. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x; t) is the positive solution of the CR heat equation (4.2) on Hn � [0;1). Then the CR
matrix Li-Yau-Hamilton inequality (4.3) holds.

Remark 4.2. We observe that from the proof of Theorem 4.5 that the CR matrix Li-Yau-
Hamilton inequality (4.3) still holds in a complete noncompact pseudohermitian manifold
whenever both the CR sub-Laplacian comparison property (4.27) and the u0-growth property
hold. We should point out that the extra u0-growth property is equivalent to (4.35) that has
no analogue in Kähler manifolds.

By applying Theorem 4.5 to the heat kernel H(x; y; t) with V = �rH
H
and observe that

the well-known asymptotic of H(x; o; t) ( [V], [Ga], [B], [Le], [T], [BBN], etc)

�t logH(x; o; t)! 1

4
r2(x)

as t ! 0: Here r(x) be the Carnot-Carathéodory distance function to the origin o 2 Hn.
We have the following complex Hessian comparison theorem for r on Hn. Such a Hessian
comparison property seems to be new in the standard (2n+1)-dimensional Heisenberg group
Hn:

Corollary 4.6. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group. Then
in the sense of distribution, we have

[(r2(x))�� + (r
2(x))��] � (16 + C0)h��(x)

for some constant C0. In particular, we recapture the sub-Laplacian comparison property

�br
2(x) � (16 + C0)n

in the Heisenberg group.

In the following, in section 4:1, we prove the CR matrix Li-Yau-Hamilton inequality for
the CR heat equation via methods developed as in [LY], [CKL1] and [CN]. In section 4:2, we
prove a CR Li-Yau gradient estimate in the standard (2n+1)-dimensional Heisenberg group.
Combining this with Theorem 4.1, we have the CR matrix Li-Yau-Hamilton inequality and
Hessian comparison property in the standard (2n+ 1)-dimensional Heisenberg group Hn.
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4.1. CRMatrix Li-Yau-Hamilton Inequality. Let u(x; t) be the positive solution of the
CR heat equation (4.2). For the CR Li-Yau gradient estimate as in the paper [CKL1], we
observe that one of di¢ culties is to deal with CR Bochner formula ( 4.16) which involving
a term hJrb'; rb'0i that has no analogue in the Riemannian case. In order to overcome
this di¢ culty, we introduce a new scalar Harnack quantity G = t[jrb'j2 + �'t + t'20] with
' = lnu by adding an extra term t'20 to jrb'j2+�'t which was appeared in Li-Yau estimate
([LY]). See section 4:2 for more details.
Now we want to �nd the right quantity for the CR matrix Li-Yau-Hamilton inequality. By

comparing the Harnack quantity in [CN] in case of Kähler manifolds, we de�ne the matrix
Harnack quantity

(4.6) N��� =
1

2
(u��� + u���) + 2

u

t
h��� � b

u�u��
u

� at
ju0j2

u
h���

by adding an extra term F := �at ju0j
2

u
h��� in which positive constants a and b to be deter-

mined later (say a = 1
24
and b = 1

4
).

De�nition 4.1. (i) ([GL]) De�ne the purely holomorphic Hessian operator P��� :

P���' := �2i(A�
'
)�
and the purely holomorphic Poisson operator Q :

Q' := h�
��(P���') = �2i(A�
'
)�

for any smooth function ': Note that P���' = 0 = Q' for any smooth function ' if A�� = 0
on M:

Lemma 4.1. Let u(x; t) be the positive solution of the CR heat equation (4.2). Then
1
2
(u��� + u���) satis�es the following :

1

2

�
@

@t
��b

��
u��� + u���

�
= 2R��
���u
�� �R���u��� �R���u��� + C���;

where
C��� := i

�
A
�;��u�
 � A�
��;�u


�
h��� + i

�
A
�u�
�� � A�
��u�


�
h���

+in
�
A�
��u�
 � A�
u�
��

�
+ in

�
A�
��;�u
 � A
�;��u�


�
:= �(ReQu)h��� + n(ReP���u):

Note that trC��� = h�
��C��� = 0: In particular we have C11 = 0 for n = 1: In addition if the

positive solution u satis�es P���u = 0 which is the case when the torsion is vanishing, then
u��� satis�es the following CR Lichnerowicz-Laplacian heat equation ([CCF]) :�

@

@t
��b

�
u��� = 2R��
���u
�� �R���u��� �R���u���:

Proof. Note that �
@
@t
��b

� �
u
���
+ u���

�
= @

@t

�
u
���
+ u���

�
��b

�
u
���
+ u���

�
= [(�bu)

���
��bu��� ] + [(�bu)��� ��bu���]:
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(i) We �rst compute [(�bu)
���
��bu��� ] : By de�nition, we have

(4.7) (�bu)��� = (u��� + u���)��� = u������ + u������:

Compute

(4.8)

u������ = (u���� � ih���u�0 �R������u�)��
= u������ � ih���u�0�� �R������;��u� �R������u���
= u������ � ih���u�0�� �R������;��u� �R������u���
= u������ + i

�
u��h���A���� � u��h���A����

�
+i (nu��A���� � u��h���A����)
�ih���u�0�� �R������;��u� �R������u���

=
�
u���� + ih���u�0 +R������u�

�
��

+i
�
u��h���A���� � u��h���A����

�
+i (nu��A���� � u��h���A����)
�ih���u�0�� �R������;��u� �R������u���

= u������ + ih���u�0�� � ih���u�0��
�R������;��u� �R������u��� +R������;��u� +R������u���
+i
�
u��h���A���� � u��h���A����

�
+ i (nu��A���� � u��h���A����) :

Here we have use commutation relations

u������ = u������ + i
�
u��h���A���� � u��h���A����

�
+i (nu��A���� � u��h���A����)

and

u������ =
�
u���� + ih���u�0 +R������u�

�
��

= u������ + ih���u�0�� +R������;��u� +R������u���:

Similiar, we have

(4.9)

u������ = u������ + ih���A����;�u� + ih���A����;�u��
�ih���A����;�u� � ih���A����u��
�i (nA��u��)�� + i (h���A��u��)��
+R������u��� +R������u���
�ih���u0��� + ih���u���0

It follow from (4.7), (4.8) and (4.9) that

(4.10)

(�bu)��� ��bu��� = +2R������u��� �R���u��� �R���u���
+
�
R������;�� �R������;��

�
u�

+ih���u�0�� � ih���u�0�� � ih���u0��� + ih���u���0
+i
�
u��h���A���� � u��h���A����

�
+ i (nu��A���� � u��h���A����)

+ih���A����;�u� + ih���A����;�u�� � ih���A����;�u�
�ih���A����u�� � i (nA��u��)�� + i (h���A��u��)��
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By CR Bianchi identity ([L1]) and commutation relation, the third line of RHS in (4.10)
becomes

R������;�� �R������;��

= R������;�� �R������;��

= R������;�� �R������;��
= �iA����;�h��� � iA����;�h��� + iA����;�h��� + iA����;�h���
= �iA����;�h��� � iA����;�h��� + iA����;�h��� + inA����;�

and the fourth line becomes
ih���u�0�� � ih���u�0�� � ih���u0��� + ih���u���0
= iu�0�� � iu�0�� � iu0��� + iu���0
= iu���0 � iu0���
= �iA��;��u�� � iA��u���� � iA����u�� � iA����;�u�

(ii) We compute [(�bu)��� ��bu���] by take the conjugate of [(�bu)
���
��bu��� ] and then

switch index � and �:
Now we arrange all the torsion terms together in (i) and (ii), then we are done. �
Note that it follows from commutation relation ([CKL1]) that

�bu0 = (�bu)0 + 2
h
(A��u�)� + (A��u�)�

i
:

Hence
[�b; T]u = �2 ImQu:

Proof of Theorem 4.1 :

Proof. As in [H2], it su¢ ces to prove that the Hermitian symmetric (1; 1)-tensor

N��� =
1

2
(u��� + u���) + 2

u

t
h��� � b

u�u��
u

� Fh��� � 0

for t > 0 and some constant a and b to be determined. Here

F := at
ju0j2

u
:

Now we �rst compute�
@
@t
��b

� u�u��
u

= @
@t

�u�u��
u

�
��b

�u�u��
u

�
= �1

u2
�bu � u�u�� + 1

u
(�bu)� u��

+ 1
u
u� (�bu)�� ��b

�
1
u
u�u��

�
and

�b

�
1
u
u�u��

�
=

���bu
u2

+ 4
u3
u�
u


�
u�u�� +

1
u
�b

�
u�u��

�
� 2
u2
u

�
u�u��

�
�

� 2

u2
u�

�
u�u��

�


:

Hence �
@
@t
��b

� u�u��
u

= � 2
u
u�
u���
 � 2

u
u��
u��
 � 2

u3
jruj2 u�u��

+ 2
u2
u

�
u�u��

�
�

+ 2

u2
u�

�
u�u��

�



+ 1
u
((�bu)� ��b (u�))u�� +

1
u

�
(�bu)�� ��b

�
u��
��
u�:
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Therefore by using Lemma 4.1, we have�
@
@t
��b

�
N���

= 2R��
���u
�� �R���u��� �R���u��� + C���
+b
�
2
u
u�
u���
 +

2
u
u��
u��
 +

2
u3
jruj2 u�u�� � 2

u2
u

�
u��
u�� + u�u���


��
�b 2

u2
u�

�
u�
u�� + u�u��


�
� 2 u

t2
h���

�b 1
u
((�bu)� ��b (u�))u�� � b 1

u

�
(�bu)�� ��b

�
u��
��
u�

�
�
@
@t
��b

�
Fh���:

Observe that
(4.11)
1
u
((�bu)� ��b (u�))u��

= 1
u
(u
�
� + u�

� � u�
�
 � u��

)u��

= 1
u
(u
��
 � ih��
u
0 �R�
�u
 + u��

 � ih��
u0
 � inA�
u�
 + ih�
�A
�u�� � u�
�
 � u��

)u��

= 1
u

�
�iu�0u�� �R�
�u
u�� � iu0�u�� � inA�
u�
u�� + iA��u��u��

�
= � 1

u
R�
�u
u�� � 2i

u0�u��
u

� (n� 2) i 1
u
A��u��u��:

Thus �
@
@t
��b

�
N���

= 2R��
���N
�� �R���N��� �R���N��� + C���
+2bR��
���

u
u��
u
+ b (n� 2) i 1

u
A��u��u�� � b (n� 2) i 1

u
A����u�u�

+2b
u

�
u�
 � u�u


u

� �
u���
 �

u�
u��
u

�
+2b

�
1
u
u��
u
�� � 1

u2
u
u��
u�� � 1

u2
u�
u�u
��

�
+2biu0

u2
u�u�� � 2biu0u u��� �

�
@
@t
��b

�
Fh���

+b jruj2 u�u��
u3

� 2u
t2
h���

+2bi
u0�u��
u

� 2biu0��u�
u

:

Note that we can rewrite N��� as following :

N��� = u��� �
1

2
iu0h��� + 2

u

t
h��� � b

u�u��
u

� Fh���:

Then we replace u��
 = N��
+
iu0h��

2

�2u
t
h��
+ b

u�u�

u
+Fh��� into third and forth line of RHS

as above, we have

2b
�
1
u
u��
u
�� � 1

u2
u
u��
u�� � 1

u2
u�
u�u
��

�
+ib2u0

u2
u�u�� � ib2u0

u
u��� �

�
@
@t
��b

�
Fh���

= 2b
u
N��
N��
 � 8b

t
N��� + 8b

u
t2
h��� + (b

3 � 2b2) jruj2 u�u�
u3

+(8b� 8b2) 1
t

u�u��
u
+ b

u20
2u
h���

+b2
2u�u�

u2

N��
 + b2 2u�u�

u2

N
�� � b 2
u2
u
u��N��
 � b 2

u2
u�
u�N
��

+4b
u
FN��� +

2b
u
F 2h��� + 4 (b

2 � b)
Fu�u��
u2

�2b4
t
Fh��� �

�
@
@t
��b

�
Fh���:
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Finally one obtains

(4.12)

�
@
@t
��b

�
N���

= 2R��
���N
�� �R���N��� �R���N��� + C���
+2bR��
���

u
u��
u
+ b (n� 2) i 1

u
A��u��u�� � b (n� 2) i 1

u
A����u�u�

+2b
u

�
u�
 � u�u


u

� �
u���
 �

u�
u��
u

�
+ 2b

u
N��
N��
 � 8b

t
N���

+b2
2u��u


u2
N��
 + b2 2u�u�


u2
N
�� � 2b

u2
u
u��N��
 � 2b

u2
u�
u�N
�� +

4b
u
FN���

�
�
@
@t
��b

�
Fh��� +

2b
u
F 2h��� + 4 (b

2 � b)
Fu�u��
u2

+(8b� 2) u
t2
h��� + b

u20
2u
h���

+(8b� 8b2) 1
t

u�u��
u
+ (b3 � 2b2 + b) jruj2 u�u�

u3

�8b
t
Fh��� + 2bi

u0�u��
u

� 2biu0��u�
u

Note the �rst and second line of RHS are positive by curvature assumption. The third
and fourth line are nonnegative while we apply on null vector of N���.
In the following we determined F to make the rest terms nonnegative. First observe that�

@
@t
��b

� u20
u

= 2u0
u
[T;�]u� 2kru0k2

u
+ 4u0hru0;rui

u2
� 2u20

kruk2
u3

= �2



ru0
u
1
2
� u0ru

u
3
2




2 ;
where we use the fact that [T;�]u = 2 ImQu = 0 which is always true if P���u = 0. The last
four lines of (4.12) become

(4.13)

�
b
2
� a (1 + 8b)

� u20
u
h��� + 2at




ru0
u
1
2
� u0ru

u
3
2




2 h���
+2

�
a2t2b

u40
u3
h��� + 2

(b2�b)p
b
at
p
b
u20u�u��
u3

+
(b2�b)

2

b
jruj2
2

u�u��
u3

�
+(8b� 2) u

t2
h���

+2bi
u0�u��
u

� 2biu0��u�
u

+ 8b (1� b)
u�u��
tu
:

Note that the second line above is a complete square. To handle the last term, we have
following

(4.14)

2bi
u0�u��
u

� 2biu0��u�
u

+ 8b (1� b)
u�u��
tu

= 2bi
u0��u0u�

up
u

u��p
u
� 2biu0���

u0u��
up

u
u�p
u
+ 8b (1� b)

u�u��
tu

= b
�
"
u0��u0u�

up
u

� 2
"
i u�p

u

��
"
u0���

u0u��
up

u
+ 2

"
i
u��p
u

�
�b"2 u0��

u0u�
up

u

u0���
u0u��
up

u
� 4b

"2
u�u��
u
+ 8b (1� b)

u�u��
tu
:

By taking "2 = 4at
b
; we have

2at



ru0
u
1
2
� u0ru

u
3
2




2 h��� � b"2
u0��u0u�

up
u

u0���
u0u��
up

u

= 2at



ru0
u
1
2
� u0ru

u
3
2




2 h��� � 4atu0��u0u�
up

u

u0���
u0u��
up

u

� 0:
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Then by applying (4.13) and (4.14)�
b
2
� a (1 + 8b)

� u20
u
h��� + 2at




ru0
u
1
2
� u0ru

u
3
2




2 h���
+2

�
a2t2b

u40
u3
h��� + 2

(b2�b)p
b
at
p
b
u20u�u��
u3

+
(b2�b)

2

b
jruj2
2

u�u��
u3

�
+(8b� 2) u

t2
h���

+2bi
u0�u��
u

� 2biu0��u�
u

+ 8b (1� b)
u�u��
tu

�
�
b
2
� a (1 + 8b)

� u20
u
h��� + (8b� 2) ut2h��� +

�
8b (1� b)� b2

a

�
u�u��
tu

= 0

when we choose a; b such that
b
2
� a (1 + 8b) = 0;

8b� 2 = 0;

8b (1� b)� b2

a
= 0:

That is

a =
1

24
and b =

1

4
:

Hence from (4.12)

(4.15)

�
@
@t
��b

�
N���

� 2R��
���N
�� �R���N��� �R���N��� +
1
2u
R��
���u
u��

+ 1
2u

�
u�
 � u�u


u

� �
u���
 �

u�
u��
u

�
+ 1

2u
N��
N��
 � 2

t
N���

+1
8

u��u


u2
N��
 +

1
8

u�u�

u2

N
�� � 1
2u2
u
u��N��
 � 1

2u2
u�
u�N
�� +

1
u
FN���

+C��� +
1
4u
(n� 2) i[A��u��u�� � A����u�u�]:

which is nonnegative while we apply on null vector of N��� we assume nonnegative bisectional
curvature, nonnegative bi-torsion tensor and nonnegative C��� as well. �

4.2. The CR Gradient Estimate and Harnack inequality in Heisenberg Groups.
In this section, by using the method of CR Li-Yau gradient estimate ([LY], [CKL1]) and
CR Bochner formula (4.16), we derive a CR gradient estimate and CR Harnack inequality
for the positive solution of the CR heat equation (4.2) in (2n + 1)-dimensional Heisenberg
group.
We �rst recall the following CR version of Bochner formula in a complete pseudohermitian

(2n+ 1)-manifold.

Lemma 4.2. ([Gr]) For a smooth real-valued function ';

(4.16)
1
2
�b jrb'j2 = j(rH)2'j2 + hrb';rb�b'i+ 2 hJrb';rb'0i

+[2Ric� (n� 2)Tor] ((rb')C ; (rb')C) :

Here (rb')C = '�Z� is the corresponding complex (1; 0)-vector of rb'.

Since

j(rH)2'j2 = 2
P

�;�(j'��j2 + j'��j2) � 2
P

� j'��j2 � 1
2n
(�b')

2 + n
2
'20
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and for any v > 0,

2 hJrb';rb'0i � 2 jrb'j jrb'0j � v�1 jrb'j2 + v jrb'0j
2 :

Therefore, for a real-valued function ' and any v > 0, we have the following Bochner
inequality

(4.17)
1
2
�b jrb'j2 � 1

2n
(�b')

2 + n
2
'20 + hrb';rb�b'i � v jrb'0j

2

+[2Ric� (n� 2)Tor � 2v�1] ((rb')C ; (rb')C) :

Now let u(x; t) be a positive solution of the CR heat equation (4.2) and denote

' (x; t) = lnu (x; t) :

Then ' (x; t) satis�es

(4.18) (�b � @
@t
)' = � jrb'j2

and from Lemma 3.5 in [CKL1]

(4.19) (�b � @
@t
)'0 = �2 hrb';rb'0i+ 2V (') ;

where the operator V is de�ned by

V (') = (A��'
�);�+(A��'

�);�+A��'
�'� + A��'

�'�:

Therefore, if A�� = 0 then one obtains V (') = 0:

Lemma 4.3. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group. If u(x; t)
is a positive solution of (4.2) on Hn � [0;1). Let ' (x; t) = lnu (x; t), then for any given
� � �1; the function

G (x; t) := t[jrb'j2 (x; t) + �'t (x; t) + t'20 (x; t)]
satis�es the inequality

(4.20)
(�b � @

@t
)G

� �2 hrb';rbGi � t�1G+ ��2n�1t�1G2 + ��2n�1(�+ 1)2t jrb'j4
�2n�1��2[(�+ 1) jrb'j2 + t'20]G+ 2[�

�2n�1(�+ 1)t2'20 � 1] jrb'j2 :

Proof. Note that

G = t[jrb'j2 + �'t + t'20] = t[(�+ 1) jrb'j2 + ��b'+ t'20]:

By taking v = t into the inequality (4.17), we compute

�bG = t[�b jrb'j2 + ��b't + t�b'
2
0]

� t[ 1
n
(�b')

2 + n'20 + 2 hrb';rb�b'i
+ ��b't + 2t'0�b'0 � 2t�1 jrb'j2];

and it follows from (4.19) that
@
@t
G = t�1G+ t[2 (�+ 1) hrb';rb'ti+ ��b't + '20 + 2t'0'0t]

= t�1G+ t[2 (�+ 1) hrb';rb'ti+ ��b't + '20
+ 2t'0�b'0 + 2t hrb';rb'

2
0i];
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Thus, we have

(4.21) (�b � @
@t
)G � �2 hrb';rbGi � t�1G+ t[n�1 (�b')

2 � 2t�1 jrb'j2];
where we used

hrb';rbGi = t[(�+ 1) hrb';rb'ti+ t hrb';rb'
2
0i � hrb';rb�b'i]:

However, since

�b' = � jrb'j2 + 't = ��1[t�1G� (�+ 1) jrb'j2 � t'20];

thus
(�b')

2 � ��2t�2G2 � 2��2t�1G[(�+ 1) jrb'j2 + t'20]

+��2[(�+ 1)2 jrb'j4 + 2(�+ 1)t'20 jrb'j2]:
The Lemma follows from substituting this inequality into (4.21). �
Proof of Theorem 4.3:

Proof. Let B2R be a ball of radius 2R center at O 2 Hn with R > 1: Let  2 C10 (R) be
a cut-o¤ function such that 0 �  � 1;  (t) � 1 for t 2 [0; 1];  (t) � 0 for t � 2: We also
require

(4.22)  0 � 0;  00 � �C1; and j 0j2
 
� C2;

where C1 and C2 are positive constants. Denote by dc(x) be the Carnot-Carathéodory

distance from O to x in Hn. Then we de�ne �(x) =  
�
dc(x)
R

�
: It is clear that supp� � B2R

and �jBR � 1: For
G = t[jrb'j2 + �'t + t'20]

we consider the function �G with support on B2R � (0;T]: Let (x0; t0) 2 B2R � (0;T] be the
maximum point of �G. Note that at (x0; t0) we have the following properties

(4.23) rb(�G) = Grb� + �rbG = 0;

(4.24) �b(�G) � 0;
and

(4.25) @
@t
(�G) = �Gt � 0:

In the sequel, all computations will be at the point (x0; t0) and we may assume that

(�G)(x0; t0) > 0;

otherwise (�G)(x0; t0) � 0; and the Theorem is true. By (4.23), rbG = �Grb�=�; and from
(4.24)

(4.26)
0 � �b(�G) = G�b� + ��bG+ 2hrb�;rbGi
= G�b� + ��bG� 2��1G jrb�j2 :

By (4.22), we have
jrb�j2
�

= j 0j2jrbdcj2
 R2

= j 0j2
 R2

� C2
R2
;

and
�b� =

 00jrbdcj2
R2

+  0�bdc
R

=  00

R2
+  0

R
�bdc � �C1

R2
�

p
C2
R
�bdc:



23

By the CR sublaplacian comparison property in [CTW]

(4.27) �bdc � C
dc
;

for some constant C, then
�b� � �C3

R
:

Substituting these into (4.26), applying the inequality (4.20) and it follows from (4.33)
that we have the estimate

t20'
2
0 � C5;

for some constant C5 > 0. All these imply

0 � �b(�G) � �C3R�1G� 2C2R�1G+ ��bG
� �C4R�1G+ �[Gt � 2hrb';rbGi � t�10 G+ n�1��2t�10 G2]

�2�n�1��2[(�+ 1) jrb'j2 + t0'
2
0]G+ n�1��2(�+ 1)2�t0 jrb'j4

+2�[n�1��2(�+ 1)C5 � 1] jrb'j2 ;
where C4 = C3 + 2C2.
Since �Gt = (�G)t � 0; �hrb';rbGi = Ghrb';rb�i; then by the following inequality

n�1��2(�+ 1)2t0 jrb'j4 + 2[n�1��2(�+ 1)C5 � 1] jrb'j2

� �2t�10 [n�1��2C25 + n�2(�+ 1)�2];

the above inequality can be reduced as

0 � n�1��2t�10 �G2 � (C4R�1 + t�10 �)G� 2Ghrb';rb�i
�2n�1��2[(�+ 1) jrb'j2 + t0'

2
0]�G

�2�t�10 [n�1��2C25 + n�2(�+ 1)�2]:

Then multiplying by �t0; since 0 � � � 1 and hrb';rb�i � jrb'j jrb�j, we get

(4.28)
0 � n�1��2(�G)2 � (C4R�1t0 + 1)�G� 2t0 jrb'j jrb�j �G

�2n�1��2�t0[(�+ 1) jrb'j2 + t0'
2
0]�G

�2[n�1��2C25 + n�2(�+ 1)�2]:

Observe that there exists a constant C6 > 0 such that

�2n�1��2(�+ 1)� jrb'j2 � 2
p
C2R

�1�1=2 jrb'j � C6�
2(�+ 1)�1R�2:

Hence combining this with (4.28) and using t20'
2
0 � C5 again, we conclude that

0 � n�1��2(�G)2 + [C7t0�
2(�+ 1)�1R�1 � 1� 2n�1��2C5]�G

�2[n�1��2C25 + n�2(�+ 1)�2]

for some constant C7 > 0: This implies that at the maximum point (x0; t0)

�G � C8�
2[C5 � (�+ 1)�1(1 + �2t0R�1)]

for some constant C8 > 0: In particular since t0 � T; when restricted on B2R�fTg we have
jrb'j2 + �'t + T'

2
0 � C8�

2[(C5 � (�+ 1)�1)T�1 � �2(�+ 1)�1R�1]:

Theorem 4.3 follows by letting t = T and then taking R!1. �



24

Corollary 4.7. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x; t) is the positive solution of the CR heat equation (4.2) on Hn � [0;1) ; we have the
Harnack inequality

(4.29) u(x1;t1)
u(x2;t2)

�
�
t2
t1

�C
exp

�
dc(x1;x2)2

2(t2�t1)

�
for any x1; x2 in Hn and 0 < t1 < t2 < 1; where dc(x1; x2) is the Carnot-Carathéodory
distance between x1 and x2.

Proof. Let 
 be a horizontal curve with 
(t1) = x1 and 
(t2) = x2: We de�ne � : [t1; t2] !
Hn � [t1; t2] by

�(t) = (
(t); t):

Clearly, �(t1) = (x1; t1) and �(t2) = (x2; t2): Integrating along �; we get

(4.30)
lnu(x1; t1)� lnu(x2; t2) = �

R t2
t1

d
dt
lnudt

=
R t2
t1
[�h _
;rb(lnu)i � (lnu)t]dt:

On the other hand, Theorem 4.3 implies that

�(lnu)t � At�1 + ��1 jrb(lnu)j2

where A = �C1�[C1 � (� + 1)�1] for some constant C1 depending only on n. Hence (4.30)
becomes

ln u(x1;t1)
u(x2;t2)

�
R t2
t1
[j _
j jrb(lnu)j+ ��1 jrb(lnu)j2 + At�1]dt:

Using the inequality
��1 jrb(lnu)j2 + j _
j jrb(lnu)j � ��

4
j _
j2

and choosing
j _
j = dc(x1;x2)

t2�t1 ;

we conclude that
ln u(x1;t1)

u(x2;t2)
� ��

4
dc(x1;x2)2

t2�t1 + A ln t2
t1
:

By taking exponential of both sides, we have

u(x1;t1)
u(x2;t2)

�
�
t2
t1

��C1�[C1�(�+1)�1]
exp

�
��dc(x1;x2)2

4(t2�t1)

�
:

The result follows by choosing � = �2: �
As a consequence of Corollary 4.7 and [CY], we have the following upper bound estimate

for the heat kernel of (4.2).

Corollary 4.8. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group and
H(x; y; t) be the heat kernel of (4.2) on M � [0;1). Then for some constant � > 1 and
0 < � < 1; H(x; y; t) satis�es the estimate

(4.31) H(x; y; t) � C(�)�V � 1
2 (Bx(

p
t))V � 1

2 (By(
p
t)) exp

�
�d2cc(x;y)

(4+�)t

�
with C(�)!1 as �! 0.
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Once we have the upper bound estimate for the heat kernel and the sub-laplacian com-
parison property (4.27). Then by applying the arguments of Li-Tam as in [LT] or [Li], we
have the following mean value inequality.

Corollary 4.9. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group and g
be subsolution of the CR heat equation such that�

@

@t
��b

�
g (x; t) � 0:

Then for some constant C depend on �; � ; �, such that 0 < � < 1; 0 < � < T , 0 < � < 1
2
; the

following inequality holds for any � > 2
p
T ;

(4.32) sup
Bp((1��)�)�[�;T ]

g � C

Z T

(1��)�

Z
Bp(�)

g (y; s) dyds:

4.3. Complete noncompact case. In [CN], Cao and Ni derived matrix Harnack estimates
for the positive solution of the heat equation on complete noncompact Kähler manifolds
of nonnegative bisectional curvature by using the key estimate (4.34) which is obtained
from the result of Li-Yau heat kernel estimate ([LY]). For a general complete noncompact
pseudohermitian manifold, we do not have Li-Yau type heat kernel estimates. However,
we do have the CR corresponding result of Li-Yau heat kernel on Heisenberg groups as in
Corollary 4.8. Comparing the method of Cao-Ni, we should point out that we also need the
extra u0-growth property (4.35) that has no analogue in Kähler manifolds. First we need a
lemma [CFTW].

Lemma 4.4. Let hs(z; t) be the heat kernel on Hn � [0;1), and M = C3
C2sm

where C2 ,C3
constant depend on n, we have

(4.33) j
�
@
@t

�m
hs(z; t)j �Mhs(z; t) :

Note that @
@t
is the derivative along the T direction of Hn and s is a parameter of time.

Lemma 4.5. Let (Hn; J; �) be the standard (2n + 1)-dimensional Heisenberg group. If
u(x; t) is the positive solution of the CR heat equation (4.2) on Hn � [0;1) :. We have for
0 < � � t � 2� �, there exists a constant b > 0 (might depends on �) such that

(4.34) u(x; t) � exp(b
�
r2 (x) + 1

�
)

and

(4.35) ju0j (x; t) � exp(b
�
r2 (x) + 1

�
):

Proof. Let o 2 M be a �xed point. Since our focus here is to obtain an upper bound on u
for positive time, we may assume that u(x; t) is de�ned onM � [0; 2]: By Harnack inequality
in Corollary 4.7, we have, for 0 < t < 2

u(x; t) � C

tC3
u(o; 2) exp(ar2 (x)):
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Here a is a constant and r2 (x) is the Carnot-Carathéodory distance dc(o; x). In particular,
for 0 < � � t � 2� �; there exists a constant b > 0 such that

u(x; t) � exp(b(r2 (x) + 1)):

But from (4.33) as in next section, we have

ju0(x; t)j �
C

t
u(x; t):

Hence we also have

ju0j (x; t) � exp(b
�
r2 (x) + 1

�
):

�

Lemma 4.6. Let M be a complete pseudohermitian (2n+ 1)-manifold with nonnegative
bisectional curvature and nonnegative bi-torsion tensor. Let u be the positive solution of the
CR heat equation (4.2). Then�

@

@t
��b

�
krbuk2 � �2 ku��k2 �

1

2



u��� + u���


2 + 4 krb (u0)k krbuk :

In addition if the positive solution u satis�es the purely holomorphic Hessian operator P���u =
0: we have �

@

@t
��b

�

u��� + u���


2 � 0:

Proof. We compute�
@
@t
��b

�
krbuk2 =

�
@
@t
��b

�
2u�u��

= 2 (�bu)� u�� + 2 (�bu)�� u� � (2u�u��)��� � (2u�u��)���
= 2

�
2u���� � inu0�

�
u�� + conj:� (2u�u��)��� � conj

= 4u����u�� � 4ih���u�0u�� � 4R���u�u�� � 2inu0�u��
+4u�����u� + 4ih���u��0u� � 4R���u��u� + 2inu0��u�
�
�
2u����u�� + 2u��u���� + 2u���u��� + 2u�u�����

�
�
�
2u�����u� + 2u����u�� + 2u���u��� + 2u��u����

�
= �4ih���u�0u�� � 4R���u�u�� � 2inu0�u��

+4ih���u��0u� � 4R���u��u� + 2inu0��u� � 4u��u���� � 4u���u���
+2u�� (inu�0 +R���u�)� 2u� (inu��0 �R���u��)

= �4u��u���� � 4u���u��� � 4R���u�u��
�4iu0�u�� + 4iu0��u� + 2i (n� 2)A����u�u� � 2i (n� 2)A��u��u��:

By curvature assumptions, we have�
@

@t
��b

�
krbuk2 � �2 ku��k2 �

1

2



u��� + u���


2 + 4jjrb (u0) jj krbuk
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and�
@
@t
��b

� 

u��� + u���


2

= 2
��

@
@t
��b

� �
u��� + u���

��
(u��� + u���) + conj

�2
��
u��� + u���

�


(u��� + u���)�


�
+ conj

� 2
��

@
@t
��b

� �
u��� + u���

��
(u��� + u���) + conj

= 2
�
2R��
���u
�� �R���u��� �R���u��� + C���

�
(u��� + u���) + conj

=
�
2R��
���

�
u
�� + u��


�
�R���

�
u��� + u���

�
�R��� (u��� + u���) + C���

�
(u��� + u���) + conj

� 0:

Note that we have used [�; T ]u = 0, C��� = 0 and the following inequality :�
2R��
���

�
u
�� + u��


�
�R���

�
u��� + u���

�
�R��� (u��� + u���)

�
(u��� + u���)

= 2R���������� � 2R
�
 (�
)
2

= �R������(�� � ��)
2

� 0:

Here we denote u
�
 + u�

 = �
 ( since u
�� + u��
 is symmetric and then diagonalized). �

Combining Lemma 4.5 and Lemma 4.6, we are able to obtain the following.

Lemma 4.7. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group. If u(x; t)
is the positive solution of the CR heat equation (4.2) onHn� [0;1) : There exists a constant
b̂ > 0; depending only on b such thatZ T

2�

Z
M

exp
�
�b̂r2

��
krbu0k2 + krbuk2 + ku��k2 +



u��� + u���


2� d�dt <1:

Proof. We multiply �2 on both sides of the following equation�
@

@t
��b

�
u2 � �2 kruk2 ;

where � be a cut-o¤ function such that � = 0 for dc(x; p) > 2R; t < �; and � = 1 as
dc (x; p) < R , t > 2� and jr�j � C

R
. Then

(4.36)

R T
0

R
M
kruk2 �2d�dt

�
R T
0

R
M

��
�� @

@t

�
u2
�
�2d�dt

=
R T
0

R
M
(�u2)�2d�dt+

R
M
u2 (x; 0)�2 (x; 0) d�

�
R
M
u2 (x; T )�2 (x; T ) d�+

R T
0

R
M
u2 (x; t)

�
�2
�
t
d�dt

�
R T
0

R
M
u2 (x; t)

�
�2
�
t
d�dt�

R T
0

R
M
2� hru2;r�iJ;� d�dt:

By Young�s inequality we haveZ T

0

Z
M

2�


ru2;r�

�
J;�
d�dt � 1

2

Z T

0

Z
M

kruk2 �2d�dt+ 8
Z T

0

Z
M

u2 kr�k2 d�dt:
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Then (4.36) becomesZ T

2�

Z
M

kruk2 �2d�dt � 2
Z T

�

Z
M

u2
�
8 kr�k2 +

�
�2
�
t

�
d�dt:

That is, there exist a positive constant C independent of R such thatZ T

2�

Z
Bp(R)

kruk2 d�dt � C

Z T

�

Z
Bp(2R)

u2d�dt:

By choosing R = 2n and b1 > 4b; thus

(4.37)

R T
2�

R
M
e�b1r

2 kruk2 d�dt
�
P1

n=1 e
�b1(2n)2

R T
�

R
Bp(2n+1)nBp(2n) kruk

2 d�dt

� C
P1

n=1 e
�b1(2n)2

R T
�

R
Bp(2n+1)

u2d�dt

� C
P1

n=1 e
�b1(2n)2eb2

2n+2 R T
�

R
Bp(2n+1)

e�br
2
u2d�dt

� C
R T
�

R
M
e�br

2
u2d�dt �

P1
n=1

�
e4b

eb1

�4n
<1;

where the last inequality we use the growth rate of u as in Lemma 4.5. That is

(4.38)
Z T

2�

Z
M

e�b1r
2 kruk2 d�dt <1:

Again by [�; T ]u = 0; we have �
@

@t
��b

�
u20 � �2 kru0k

2 :

By Lemma 4.5 and follow the proof above, for some positive constant b2 > 0; the following
holds

(4.39)
Z T

�

Z
M

e�b2r
2 kru0k2 d�dt <1:

From Lemma 4.6 and [�; T ]u = 0, we have

(4.40)
�
@

@t
��b

�
(krbuk2 + u20 + u2) � �2 ku��k2 �

1

2



u��� + u���


2 :

We multiply a test function �2 and integrate as in (4.36), we haveR T
0

R
M
(2 ku��k2 + 1

2



u��� + u���


2)�2d�dt

�
R T
0

R
M

��
�� @

@t

� �
krbuk2 + u20 + u2

��
�2d�dt

�
R T
0

R
M

�
krbuk2 + u20 + u2

�
(�2)td�

�
R T
0

R
M
2�


r
�
krbuk2 + u20 + u2

�
;r�

�
J;�
d�dt:

By Young�s inequality again, we obtainR T
0

R
M
ku��k2 +



u��� + u���


2 �2d�dt

� C
R
M

�
kru0k2 + kruk2 + u20 + u2

� �
kr�k2 +

�
�2
�
t

�
d�:
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Now the same argument as in (4.37), for some positive constant b3 > 0; we have

(4.41)
Z T

2�

Z
M

exp
�
�b3r2

� �
ku��k2 +



u��� + u���


2� d�dt <1:

Choose b̂ = max fb1; b2; b3g ; and combine (4.39), (4.38) and (4.41), we are done. �
The result of Lemma 4.7 can be improved to the following pointwise estimates by the

mean valued inequality.

Lemma 4.8. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group. If u(x; t)
is the positive solution of the CR heat equation (4.2) on Hn� [0;1) : For t > �; there exists
~b > 0 such that

(4.42)
krbuk2 (x; t) � exp

�
~b (r2 + 1)

�


u��� + u���



2 (x; t) � exp
�
~b (r2 + 1)

� :

Proof. We denote � = krbuk2+u20+u2. It follows from (4.40) that � is a subsolution of the
CR heat equation. We multiple factor e�b(�

2+1) on both sides of the mean value inequality
(4.32), we have

e�b(�
2+1) supBp((1��)�)�[�;T ]� (x; t)

� Ce�b(�
2+1) R T

(1��)�
R
Bp(�)

� (y; s) dyds

� C
R T
(1��)�

R
Bp(�)

e�b(r
2(y)+1)� (y; s) dyds

<1;

where r (y) is the Carnot-Carathéodory distance between p and y: The last inequality is
followed from Lemma 4.5 and Lemma 4.7. Now we substitute � = 1

1��r (x) ; we have for any
x 2 Bp

�
1
1��r (x)

�
, � < t < T;

� (x; t) � C 0eb(
1

1�� )
2
(r2(x)+1):

The other inequality in (4.42) can be obtained similarly. �
Lemma 4.9. Let (Hn; J; �) be the standard (2n+1)-dimensional Heisenberg group and g be
a smooth function on Hn such that

exp
�
k1
�
r2 + 1

��
� ' � exp

�
k2
�
r2 + 1

��
for some constant k2 > k1 > 0, then there exists Tm > 0 depending only on k2 such that the
Cauchy problem � �

@
@t
��b

�
g = 0

u (x; 0) = '

has a solution g on Hn � [0; T ]: Moreover, there exist constants C1; C2 > 0 such that

C1 exp

�
k1
4
r2
�
� g (x; t) � C2 exp

�
3k2r

2
�

on Hn � [0; Tm] :
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Proof. Similar argument as in Lemma 1.1 in [NT4], where the proof only using the heat
kernel estimate (4.31) and the sub-laplacian comparison property (4.27). �

Proof of Theorem 4.5 :

Proof. It follows from Lemma 4.9 with � = e
�
�
tg for t > �, we have�

@

@t
��b

�
� =

�

�
�

and
� (x; t) � C1 exp

�
2~b
�
r2 + 1

��
for a positive constant C1 and a positive constant � which to be determined later.
Let N��� be the matrix Harnack quantity in (4.6) We consider the following (1; 1)-tensor

(4.43) N̂��� = t2N��� + "�h���:

We only need to prove that N̂��� > 0 for any " > 0: We shall prove this by contradiction.
Suppose it is not true, then by the growth rate of � and the fact that N��� > 0 at t = 0;
there exists a �rst time t0 and by Lemma 4.8, a point x0 2 Hn and a unit vector v at x0
such that N̂��� (x0; t0) v

�v
�� = 0. Now we choose choose a normal coordinate around x0 and

extend v to a local unit vector �eld near x0: Then at x0

�b

�
N̂���v

�v
��
�
= �b

�
N̂���

�
v�v

��:

Since N̂���v
�v

�� � 0 for all (x; t) with t � t0 and x close to x0, we see that at (x0; t0),

(4.44) 0 �
�
@

@t
��b

�
(N̂���v

�v
��):

On the other hand, it follows from (4.15) we have, at (x0; t0)

(4.45)

�
@
@t
��b

�
N̂���v

�v
��

=
��

@
@t
��b

�
N̂���

�
v�v

��

� t2
�
2R��
���N
�� �R���N��� �R���N��� + C���

�
v�v

��

+t2 (Rm� Tor)
�
rup
u
; v
�

+t2 1
2u
N��
N��
v

�v
��

+t2
�
u��u


8u2
N̂��
 +

u�u�

8u2

N̂
�� � 1
2u2
u
u��N̂��
 � 1

2u2
u�
u�N̂
��

�
v�v

��

+3
4
�
�
t2"�

u��u
v

v�

u2

+t2 F
u
N���v

�v
�� + "�

�
� jvj2 :

Since N̂��� (x0; t0) v
�v

�� = 0, it follows from (4.43) that at (x0; t0)

t2
1

u
FN���v

�v
�� = �F

u
"� jvj2 :
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Now F
u
= t

24
(u0)2

u2
; by using (4.33), we have

t2
1

u
FN���v

�v
�� � �C

t
"� jvj2 � �C

�
"� jvj2

for some constant C: Hence

t2
1

u
FN���v

�v
�� + "

�

�
� jvj2 � (�� C

�
)"� jvj2 > 0

if we choose

� >
C

�
:

That is
�
@
@t
��b

�
N̂���v

�v
�� > 0. This contradicts to (4.44).

This shows that N̂��� � 0 for all 0 < � � t � 2� �. Taking "! 0 and � ! 0 and repeating
the argument to the later time. Then we are done. �

Proof of Corollary 4.6 :

Proof. By applying Theorem 4.5 to the heat kernel H(x; y; t) with V = �rbH
H
; we have

�t[(logH(x; y; t))�� + (logH(x; y; t))��]�
3

2
t[(logH(x; y; t))�(logH(x; y; t))�] � 4h�� :

But �t logH(x; o; t)! 1
4
r2(x) as t! 0: Therefore

�t[(logH(x; o; t))�� + (logH(x; o; t))��]!
1

4
[(r2(x))�� + (r

2(x))��]

in the sense of distribution. On the other hand, one can have
3

2
tjrb(logH(x; o; t)j2 � C0

for some constant C0 in a Heisenberg group Hn due to the dilation �r in Hn as in [JS,
Theorem 1.]. Therefore

[(r2(x))�� + (r
2(x))��] � (16 + C0)h��(x):

�

5. Linear Trace Li-Yau-Hamilton inequality

In this part, one of our main goals is to prove the Li-Yau-Hamilton type estimate for posi-
tive solutions of the CR Lichnerowicz-Laplacian heat equation. In the seminal paper [LY], P.
Li and S.-T. Yau established the parabolic Li-Yau gradient estimate and Harnack inequality
for positive solutions of the heat equation on Riemannian manifolds with nonnegative Ricci
curvature. Later, Hamilton ([H1]) proved the matrix Harnack inequality for solutions to the
Ricci �ow when the curvature operator is nonnegative which is called the �Li-Yau-Hamilton�
type estimates. Since then, there are many additional works in this direction which cover
various di¤erent geometric evolution equations such as the mean curvature �ow ([H2]), the
Kaehler-Ricci �ow ([Ca]), the Yamabe �ow ([C]), etc.
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In the case of Kähler geometry, it is well-known that Kähler-Ricci curvature (1; 1)-tensor
of a Kähler-Ricci �ow solution satis�es a Lichnerowicz-Laplacian heat equation. In general,
the Hodge-Laplacian heat equation on symmetric (p; p)-tensors is a geometrically interesting
system and has been extensively studied since the original works of Hodge and Kodaira ( [Mo]
and references therein). For instances, we refer to the Lichnerowicz-Laplacian heat equation
on (1; 1)-tensors as in [NT1] and the Hodge-Laplacian heat equation on (p; p)-tensors as in
[NN]. In the following we discuss the case of CR geometry.
Let (M;J; �) be a strictly pseudoconvex CR (2n+1)-manifold. In our recent paper ([CCT]),

we consider the CR Hodge-Laplacian

�H = �
1

2
(�b +�b)

for Kohn-Rossi Laplacian �b. For any (1; 1)-form �(x; t) = ����
� ^ ��; we study the CR

Hodge-Laplacian heat equation on M � [0; T )

(5.1)
@

@t
�(x; t) = 4�H�(x; t)

which connects to the existence problem of pseudo-Einstein CR (2n + 1)-manifolds with
n � 2. It follows from the CR Bochner-Weitzenbock Formula (5.12) that the CR parabolic
equation (5.1) is equivalent to the CR analogue of Lichnerowicz-Laplacian heat equation :

(5.2)
@

@t
���� = 4

�
�b���� + 2R��
����
�� � (R
�����
 +R��
�
��)

�
:

In this chapter, one of the main results is to prove such LYH type estimates for this
system (5.2). From now on, we assume that ����(x; t) is a symmetric (1; 1)-tensor on a
strictly pseudoconvex CR (2n+ 1)-manifold satisfying the CR Lichnerowicz-Laplacian heat
equation (5.2).
De�ne the Harnack quadratic by

(5.3)

Z (x; t) (V ) := k1

�
1

2

�
(div�)�;�� + (div�)��;�

�
+ (div�)� V�� + (div�)� V�� + V��V�����

�
+
H

t

for any vector �eld V 2 T 1;0 (M) ; H = h������ and k1 to be determined later. Moreover,
����;0 is denoted the component of covariant derivative of the tensor � with Reeb vector �eld
T:
With the notation above, the following is the CR analogue of the linear trace Li-Yau-

Hamilton inequality for the CR Lichnerowicz-Laplacian heat equation.

Theorem 5.1. Let (M;J; �) be a closed strictly pseudoconvex CR (2n+1)-manifold with non-
negative bisectional curvature and vanishing torsion. Let ���� (x; t) be a nonnegative symmet-
ric (1; 1)-tensor satisfying the CR Lichnerowicz-Laplacian heat equation (5.2) on M � [0; T )
and ����;0 (x; 0) = 0 at t = 0. In additional if M is complete noncompact, we assume that
there exists a constant a > 0 such that

(5.4)
Z T

�

Z
M

e�ar
2 k� (x; t)k2 d�dt <1
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and

(5.5)
Z T

�

Z
M

e�ar
2 krT� (x; t)k2 d�dt <1;

where r (x) is the Carnot-Carathéodory distance from a �xed point o and any � > 0. Then

Z (x; t) � 0;

for 0 < k1 � 8:

Remark 5.1. 1. The assumption for the initial condition ����;0 (x; 0) = 0 is valid when
we apply Theorem 5.1 to the CR Lichnerowicz-Laplacian heat equation coupled with the CR
Yamabe �ow as in Corollary 5.4. We refer to Remark 5.3 for more details.
2. If M is complete noncompact, the extra requirement of (5.5) is needed to preserve

rT� (x; t) = 0 and the extra requirement of (5.4) is needed in order to apply the maximum
principle to the Harnack quantity t2 bZ as in (5.37).
3. As in the paper of [N1] and [N2], a monotonicity derived from this sharp di¤erential

estimate of Li-Yau-Hamilton type can be applied to �(x; t) to obtain dimension estimate for
the space of holomorphic functions of polynomial growth and an optimal gap theorem. Then
it is natural to ask whether or not the CR analogue of corresponding estimates still hold. We
shall study its applications of this Li-Yau-Hamilton type estimate in this direction in a forth
coming paper.

In our recent paper ([CKW]), we study the torsion �ow in a closed pseudohermitian 3-
manifold which is the CR analogue of the Hamilton Ricci �ow. More precisely, let �(t) be
a family of smooth contact forms and J(t) be a family of CR structures on (M;J0;��) with
J(0) = J0 and �(0) =��. We consider the following torsion �ow :

(5.6)
�

@
@t
J = 2AJ;�;

@
@t
� = �2R�:

on M � [0; T ) with J(t) = i�1 
 Z1 � i�1 
 Z1 and AJ;�(t) = A11�
1 
 Z1 + A11�

1 
 Z1: In
particular if the initial torsion is vanishing, it follows from Lemma 5.9 that the torsion �ow
(5.6) is equivalent to the CR Yamabe �ow (5.7) in a closed spherical CR 3-manifold.
In this section, we present its application of Theorem 5.1 to obtain the nonlinear version

of Harnack inequality for CR Lichnerowicz-Laplacian heat equation (5.2) coupled with the
following CR Yamabe �ow :

(5.7)

(
@
@t
� (t) = �2R (t) � (t) ;

� (0) =
0

�; � = e2f �̂

on (M;��) � [0; T ) with e2f(x;0)�̂ =
0

�. Here R(t) is the Tanaka-Webster scalar curvature
with respect to the contact form � (t).
In order to prove Theorem 5.3, we need one more key fact. By applying Hamilton�s general

method for obtaining Harnack inequalities ([H1], [C]) to the CR Yamabe �ow, we have
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Theorem 5.2. Let (M;
0

�) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka-Webster curvature and vanishing torsion. Then under the CR Yamabe �ow (5.7)

(5.8)
@R

@t
+
2R

t
+ 2 hrbR; V iJ;� +

3

40
R kV k2J;� � 0

for any V 2 T 1;0 (M) :

Now we are ready to state a Harnack type inequality for CR Lichnerowicz-Laplacian heat
equation (5.2) coupled with the CR Yamabe �ow.

Theorem 5.3. Let (M;J;
0

�) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka-Webster curvature and vanishing torsion. Let �11 (x; t) be a positive symmetric (1; 1)-
tensor satisfying the CR Lichnerowicz-Laplacian heat equation (5.2) coupled with the CR
Yamabe �ow (5.7) on M � [0; T ) and �11;0 = 0 for all t: Then

ZR := Z +RH � 0
on M � [0; T ) for k1 = 4. In particular, taking V = 0

2�b�11 + (R +
1

t
)H � 0

and

(5.9)
@

@t
�11 + 2(R +

1

t
)H � 0

with H = h11�11:

As a consequence of Theorem 5.3 with �1�1 = R1�1 = Rh1�1; we have the following trace
Harnack inequality for the CR Yamabe �ow (5.7) which turns out to be a special case of the
linear Harnack inequality for the CR Lichnerowicz-Laplacian heat equation (5.2) coupled
with the CR Yamabe �ow (5.7) on a closed strictly pseudoconvex spherical CR 3-manifold.

Corollary 5.4. Let (M;J;
0

�) be a closed spherical pseudohermitian 3-manifold with positive
Tanaka-Webster curvature and vanishing torsion. Then we have the following trace Harnack
inequality for the CR Yamabe �ow (5.7)

(5.10)
@

@t
(t2R) � 0

which is Theorem 5.2 by taking V � 0:

Note that B. Chow and R. Hamilton ([CH]), L. Ni and L.-F. Tam ([NT1]) proved the
similar nonlinear trace Li-Yau-Hamilton inequality for the Ricci �ow and Kaehler Ricci �ow,
respectively. However, we conjecture that the similar nonlinear trace Li-Yau-Hamilton (5.9)
holds as well for the torsion �ow (5.6) in a closed pseudohermitian 3-manifold.
The rest of the thesis is organized as follows. In section 5:1, we derive the CR Bochner-

Weitzenbock type formula for (1; 1)-tensors. Then it is natural to consider the CR Hodge-
Laplacian heat equation which is equivalent to the CR analogue of Lichnerowicz-Laplacian
heat equation as in the Ricci �ow ([CH]) and the Kähler-Ricci �ow ([NT1]). In section 5:2,
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we prove the linear trace Li-Yau-Hamilton inequality for the CR Lichnerowicz-Laplacian heat
equation. In section 5:3, we prove a Harnack inequality for the CR Yamabe �ow. Combining
this with Theorem 5.1, we have the nonlinear version of Li-Yau-Hamilton inequality for the
CR Lichnerowicz-Laplacian heat equation coupled with the CR Yamabe �ow in a closed
strictly pseudoconvex spherical CR 3-manifold.

5.1. The CR Bochner-Weitzenbock Formula. In this section, we will derive the CR
analogue of Bochner-Weitzenbock Formula. Let � be an (p; q)-form and denote by

� = ��1�2:::�p��1��2:::��q�
�1 ^ ::: ^ ��p ^ ���1 ^ ���2 ^ ::: ^ ���q :

For abbreviation, we denote as � = �A �B�
A ^ � �B, where A and B are multiple index A =

(�1; �2; :::; �p) and B =
�
��1;
��2; :::;

��q
�
respectively. We de�ne

h�; 'i : =
1

p!q!
��1:::�p��1:::��q '�1:::�p��1::::��qh

�1��1 :::h�p��ph�1��1 :::h�q
��q

(or for simplicity) : =
1

p!q!
�A(�)��1:::��q'A(�)��1::::��qh

�1
��1 :::h�q

��q :

Theorem 5.5. Let  =  �1�2:::�p��1��2:::��q+1�
�1 ^ ::: ^ ��p ^ ���1 ^ ���2 ^ ::: ^ ���q+1, we have

(5.11)

1
2
(�b )A �B
= � A; �B;��;� � 2i (q + 1)rT A; �B �

Pq+1
k=1

Pp
l=1R


��

�l ��k
 A(l=
); �B(k=��)

�
Pq+1

k;l=1;k 6=lR
�
��

��k
��l
 A; �B(k=�
;l=��) +

Pq+1
k=1R

�

��k
 A; �B(k=�
):

Here

A = �1�2:::�p

A (l = 
) = �1�2:::�l�1
�l+1:::�p
�B = ��1��2:::��q+1

�B (k = ��) = ��1��2:::��k�1����k+1:::��q+1:

In particular, taking p = 1 = q + 1 in (5.11), we have�
1

2
�b 

�
���

= � ���;��;� � 2ir0 ��� �R 
��

� ��
 
�� +R�
 �� ��
:

Now we have the following special CR Bochner-Weitzenbock formula for an (1; 1)-form  .

Corollary 5.6. For an (1; 1)-form  =  ����
� ^ ���, we have

(5.12) (�H )��� = �
1

2

��
��b +�b

�
 
�
���
= �b ��� + 2R


��

� ��
 
�� �R�
 �� ��
 �R


� 
��:

We �rst derive the following Lemma.

Lemma 5.1. Let

� = ��1�2:::�p��1��2:::��q�
�1 ^ ::: ^ ��p ^ ���1 ^ ���2 ^ ::: ^ ���q
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and
 =  �1�2:::�p��1��2:::��q+1�

�1 ^ ::: ^ ��p ^ ���1 ^ ���2 ^ ::: ^ ���q+1 ;
we have
(5.13)

�@b�

= (�1)p
q+1P
i=1

(�1)i�1r��i
��1:::�p��1:::��i�1��i+1:::��q+1�

�1 ^ ::: ^ ��p ^ ���1 ^ ���2 ^ ::: ^ ���q+1

and

(5.14)

�@�b 

= (�1)p 1
q+1

q+1P
i=1

(�1)ir� �1:::�p��1:::��i�1����i:::��q�
�1 ^ ::: ^ ��p ^ ���1 ^ ���2 ^ ::: ^ ���q :

Proof. (i) By taking exterior derivative, we obtain

d� = db�+ T� := @b�+ �@b�+ T�

where @b� is the (p+ 1; q)-form part of db� and �@b� is the (p; q + 1)-form part of db� , T�
is the form spanned by basis � ^ �A ^ � �B. In fact we have following�

�@b�
�
�1:::�p��1:::

��q+1
= (db�)�1:::�p��1:::��q+1 = db�

�
X�1 ; :::; X�p ; X��1

; :::; X��q+1

�
:

Here

db�(X�1 ; :::; X�p ; X��1
; :::; X��q+1

)

=

pX
i=1

(�1)i+1X�i�
�
X�1 ; :::; X�i�1 ; X�i+1 ; :::; X�p ; X��1

; :::; X��q+1

�
+

q+1X
j=1

(�1)p+j+1X�j
�(X�1 ; :::; X�p ; X��1

; :::; X��j�1
; X��j+1

; :::; X��q+1
)

+
X
i<j

(�1)i+j�
��
X�i ; X�j

�
; X�1 ; :::; X�p ; X��1

; :::; X��q+1

�
+
X
i<j

(�1)i+j�
�h
X��i

; X��j

i
; X�1 ; :::; X�p ; X��1

; :::; X��q+1

�
+

X
i=1::p;j=1::q+1

(�1)p+i+j�
�h
X�i ; X��j

i
; X�1 ; :::; X�p ; X��1

; :::; X��q+1

�
:

Notice that the �rst term and third term is zero since � evaluate on (q + 1) conjugate
tangent vector �elds is zero. Moreover, sinceh

X�i ; X��j

i
= ��


�i��j
X�
 � �
��j�iX
 � ih�i��jT;

the last term will be

�
�
��
��j�iX
; X�1 ; :::; X�i�1 ; X�i+1 ; :::; X�p ; X��1

; :::; X��j�1
; X��j+1

; :::; X��q+1

�
:
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Hence

�@b�
�
X�1 ; :::; X�p ; X��1

; :::; X��q+1

�
=

q+1X
j=1

(�1)p+j+1X�j
�(X�1 ; :::; X�p ; X��1

; :::; X��j�1
; X��j+1

; :::; X��q+1
)

+
X
i<j

(�1)p+i+j�
�
X�1 ; :::; X�p ;

h
X��i

; X��j

i
; X��1

; :::; X��i�1
; X��i+1

; :::; X��j�1
; X��j+1

; :::; X��q+1

�
+

X
i=1::p;
j=1::q+1

(�1)p+i+j�
�
��
��j�iX
; X�1 ; :::; X�i�1 ; X�i+1 ; :::; X�p ; X��1

; :::; X��j�1
; X��j+1

; :::; X��q+1

�

= (�1)p
q+1X
j=1

(�1)j+1r�j
�(X�1 ; :::; X�p ; X��1

; :::; X��j�1
; X��j+1

; :::; X��q+1
):

(ii) The second formula (5.14) follows from the following computation. For d� := �^(d�)n
and cp;q = 1

p!(q+1)!

��
�@b�
�
A �B

;  AB
�

=
R
M



�@b�;  

�
d�

= cp;q
R
M

�
�@b�
�
A��1

��2:::
��q+1

 A��1��2:::��q+1h
�1
��1 :::h�q+1

��q+1d�

= cp;q
R
(�1)p

Pq+1
i=1 (�1)

i�1r��i
�A��1:::��i�1��i+1:::��q+1

�
 A��1��2:::��q+1h

�1
��1 :::h�q+1

��q+1

�
d�

= cp;q
R
(�1)p

Pq+1
i=1 (�1)

i �A��1:::��i�1��i+1:::��q+1r��i

�
 A��1��2:::��q+1h

�1
��1 :::h�q+1

��q+1

�
d�

= cp;q
Pq+1

i=1 (�1)
i+p R �A��1:::��i�1��i+1:::��q+1 �h�i��ir��i

 A��1��2:::��q+1

�
h�1��1 :::h�i�1

��i�1h�i+1
��i+1 :::h�q+1

��q+1d�

= cp;q
Pq+1

i=1 (�1)
i+p R �ABh���r�� A��1:::��i�1����i:::��qh

�1
��1 :::h�q

��qd�

= cp;q (�1)p
R
�AB

Pq+1
i=1 (�1)

i h���r�� A��1:::��i�1����i:::��qh
�1
��1 :::h�q

��qd�:

�

Proof of Theorem 5.5 :
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Proof. It follows from (5.14) that

�
�@b(�@

�
b )
�
A��1

��2:::
��q+1

= (�1)p
q+1X
i=1

(�1)i�1r��i

�
�@�b 
�
A��1:::

��i�1��i+1:::��q+1

= (�1)p+i�1
q+1X
i=1

r��i

 
1
q+1

(�1)p
P

j�i (�1)
jr� A��1:::��j�1����j :::��i�1��i+1:::��q+1

+ 1
q+1

(�1)p
Pq+2

j�i+2 (�1)
j�1r� A��1::::��i�1��i+1:::��j�1����j :::��q+1

!

=
(�1)p+i�1

q + 1

q+1X
i=1

r��i

 
(�1)p

P
j�i (�1)

j (�1)q+1�j  A��1:::��j�1��j :::��i�1��i+1:::��q+1��;�
+(�1)p

Pq+2
j�i+2 (�1)

j�1 (�1)q+1�j+1  A��1::::��i�1��i+1:::��j�1��j :::��q+1��;�

!

=
1

q + 1

q+1X
i=1

(�1)i�1r��i

 
q+2X

j=1;j 6=i+1

(�1)q+1  A��1:::��i�1��i+1:::��q+1��;�

!

=
1

q + 1

q+1X
i=1

q+2X
j=1;j 6=i

(�1)i+q  A��1:::��i�1��i+1:::��q+1��;�;��i

=

q+1X
i=1

(�1)i+q  A��1:::��i�1��i+1:::��q+1��;�;��i ;

and

�
�@�b (
�@b )

�
A��1

��2:::
��q+1

= (�1)p 1

q + 2

q+2X
i=1

(�1)ir�

�
�@b 
�
A��1:::

��i�1����i:::��q+1

= (�1)p 1

q + 2

q+2X
i=1

(�1)qr�

�
�@b 
�
A��1:::

��q+1��

= (�1)p+qr�

�
�@b 
�
A��1:::

��q+1��

= (�1)p+qr�

 
(�1)p

q+1X
j=1

(�1)i�1r��j
 A��1:::��j�1��j+1:::��q+1�� + (�1)

p+q+1r�� A��1:::��q+1

!

= �r�r�� A��1:::��q+1 �
q+1X
j=1

(�1)q+jr�r��j
 A��1:::��j�1��j+1:::��q+1��:
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Adding these together we have
1
2
�b 
=
�
�@b �@

�
b +

�@�b
�@b
�
 

= � A��1:::��q+1;��;� +
Pq+1

j=1 (�1)
j+q
�
 A��1:::��j�1��j+1:::��q+1��;�;��j �  A��1:::��j�1��j+1:::��q+1��;��j ;�

�
= � A��1:::��q+1;��;� +

Pq+1
j=1

�
 A��1:::��j�1����j+1:::��q+1;��j ;� �  A��1:::��j�1����j+1:::��q+1;�;��j

�
:

By commutation relation, we have

 A��1:::��j�1����j+1:::��q+1;��j ;� �  A��1:::��j�1����j+1:::��q+1;�;��j
= �2i (q + 1)r0 A��1:::��q+1 �R 
��

�i ��j
 �1:::�i�1
�i+1:::�p��1:::��j�1����j+1:::��q+1

�R �

��k ���j

 A��1:::��k�1�
��k+1:::��j�1����j+1:::��q+1 +R�
 ��j
 A��1:::��j�1�
��j+1:::��q+1 :

Hence
1
2
�b = � AB;��;� � 2i (q + 1)r0 AB

�
Pq+1

j=1

Pp
i=1R


��

�i ��j
 �1:::�i�1
�i+1:::�p��1:::��j�1����j+1:::��q+1

�
Pq+1

j=1 R
�
��

��k
��j
 A��1:::��k�1�
��k+1:::��j�1����j+1:::��q+1

+
Pq+1

j=1 R
�

��j
 A��1:::��j�1�
��j+1:::��q+1 :

�

5.2. Linear Trace Li-Yau-Hamilton Inequality. In this section, we will derive the LYH
type estimate for the CR Lichnerowicz-Laplacian heat equation (5.2) onM� [0; T ):We refer
to [CH] and [NT1] for related estimates.

Lemma 5.2. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M � [0; T ): Then�

@
@t
� 4�b

�
(div�)� = �8i����;0� � 4R


� (div�)
 + (Tor I)� :

Here we denote

(Tor I)� := 4
�
�inA��;�
�
�� � 2iA��H�� + in (divA)
 ���
 + inA
����
;�� + 2iA�� (div�)��

�
:

Proof. We �rst compute

(5.15)

1
4
@
@t

�
����;�

�
= 1

4

�
@
@t
�
�
���;�

=
�
����;��� + ����;��� � 2R��
����
�� �R�
 �����
 �R


��
��
�
�

= ����;���� + ����;���� �
�
2R��
����
�� +R�
 �����
 +R


��
��
�
�
:

(i) Now we deal with �rst term of RHS in (5.15) : By commutation relation

����;���� = ����;���� � ih�������;�0 �R��
����
��;� �R��
�������;
 �R��
������
;�
= ����;���� � ih�������;�0 �R��
����
��;� �R


�����;
 +R�
 �����
;�

and �
����;�� � ����;��

�
��
= i (A������ � A������)�� � i

�
���
h���A

�

� � ���
h���A

�

�

�
��

= i
�
A�
���
 � A��H

�
��
� i
�
A
����
 � n���
A
�

�
��
:
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Hence

����;���� = ����;���� � ih�������;�0 �R��
����
��;� �R

�����;
 +R�
 �����
;�

+i
�
A�
���
 � A��H

�
��
� i
�
A
����
 � n���
A
�

�
��
:

(ii) For the second term of RHS in (5.15) : Again by commutation relation

����;���� = ����;���� + i
�
����;��A�� � ����;��A��

�
and �

����;��� � ����;���
�
�
=
�
�i����;0h��� � �
��R��
��� +R�
 �����


�
�
:

One obtains
����;���� = ����;���� � i����;0�h��� �

�
�
��R��
��� �R�
 �����


�
�
:

Combining all three equalities, we have

����;���� = ����;���� � i����;0�h��� �
�
�
��R��
��� �R�
 �����


�
�

+i
�
����;��A�� � ����;��A��

�
:

Hence

(5.16)

����;���� + ����;���� �
�
2R��
����
�� +R�
 �����
 +R


��
��
�
�

= �b (div�)� � ih�������;�0 � i����;0�h���
+
�
�2R��
����
�� �R�
 �����
 �R


��
��
�
�

�R��
����
��;� �R

�����;
 +R�
 �����
;� +

�
��
��R��
��� +R�
 �����


�
�

+i
�
A�
���
 � A��H

�
��
� i
�
A
����
 � n���
A
�

�
��

+i
�
����;��A�� � ����;��A��

�
= �b (div�)� � ih�������;�0 � i����;0�h���
+ R��
���;��
�� �

�
R


��
��
�
�

+i
�
A�
���
 � A��H

�
��
� i
�
A
����
 � n���
A
�

�
��

+i
�
����;��A�� � ����;��A��

�
:

On the other hand, it follows from the CR Bianchi identity

R������;
 �R���
��;� = iA�
;��h��� + iA�
;��h��� � iA��;��h
�� � iA��;��h
��;

we have
R��
���;��
�� �R��
���;��
��
=
�
iA��;�
h��� + iA��;��h��
 � iA��;�
h��� � iA��;��h��


�
�
��

=
�
iA��;��h��
 � inA��;�


�
�
��

= iA��;��H � inA��;�
�
��
and

R��
���;��
�� �
�
R


��
��
�
�
= �R


� (div�)
 + iA��;��H � inA��;�
�
��:

Thus (5.16) becomes

����;���� + ����;���� �
�
2R��
����
�� +R�
 �����
 +R


��
��
�
�

= �b (div�)� � ih�������;�0 � i����;0�h��� �R

� (div�)


+iA��;��H � inA��;�
�
�� + i
�
����;��A�� � ����;��A��

�
+i
�
A�
���
 � A��H

�
��
� i
�
A
����
 � n���
A
�

�
��
:
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The torsion part will be

iA��;��H � inA��;�
�
�� + i
�
A�
���
 � A��H

�
��

�i
�
A
����
 � n���
A
�

�
��
+ i
�
����;��A�� �H��A��

�
= �inA��;�
�
�� + iA�
;�����
 + iA�
���
;�� � 2iA��H�� � i

�
A
����


�
��

+in
�
A
����


�
��
+ iA�� (div�)��

= �i (n� 1)A��;�
�
�� � 2iA��H�� + i (n� 1) (divA)
 ���

+i (n� 1)A
����
;�� + 2iA�� (div�)�� :

To sum up, we have�
1
4
@
@t
��b

�
(div�)� = �i����;�0 � i����;0� �R


� (div�)

+i (n� 1) (divA)
 ���
 + i (n� 1)A
����
;��
+2iA�� (div�)�� � i (n� 1)A��;�
�
�� � 2iA��H��

and �
@
@t
� 4�b

�
(div�)� = �8i����;0� � 4R


� (div�)
 + (rest:I)� ;

where we have used the following commutation relation

�i����;�0 = �i����;0� + iA
�����;�
 � iA��;�
�
�� + iA�
;�����
:

�
Lemma 5.3. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M � [0; T ): Then�

@
@t
� 4�b

� �
( div�)�;�� + (div�)��;�

�
= Tor II:

Here we denote

Tor II := �16nIm(A�� (div�)��;�� + (divA)
 ( div�)�
) + 16Im
�
(divA)�H�� + A��H��;��

�
:

Proof. From previous lemma

(5.17)

1
4
@
@t
(div�)�;�� = (�b (div�)�)�� +

�
�2i����;0� �R


� (div�)


�
��

+
�
�inA��;�
�
�� � 2iA��H��

�
��
+ (2iA�� (div�)��)��

+
�
in (divA)
 ���
 + inA
����
;��

�
��
:

Note
(�b (div�)�)�� = (div�)�;����� + (div�)�;����� :

From the commutation relation

(5.18)

(div�)�;�����

= (div�)�;����� + i
�
(div�)�;� h���A���� � (div�)�;� h���A����

�
+i
�
(div�)�;� h���A���� � (div�)�;� h���A����

�
= (div�)�;�����
= [(div�)�;��� + i (div�)�;0 h��� +R�

� (div�)�]��
= (div�)�;����� + i (div�)�;0�� h��� + (R

�
� (div�)�)��
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and
(div�)�;�����
= (div�)�;����� + i (div�)�;��0 h���
+(div�)�;��R

�
� ��� + (div�)�;�� R

��
�� ���

= (div�)�;����� + i (div�)�;��0
= [(div�)�;���� + (1� n) i (div�)� A����]� + i (div�)�;��0
= (div�)�;����� + (1� n) i ((div�)� A����)� + i (div�)�;��0 :

Hence

(5.19)

(�b (div�)�)��
= �b

�
(div�)�;��

�
+ i (div�)�;0�� + i (div�)�;��0

+(1� n) i ((div�)� A����)� + (R
�
� (div�)�)��

and from (5.17)

(5.20)

�
1
4
@
@t
��b

�
(div�)�;��

= i (div�)�;0�� + i (div�)�;��0 � 2i����;0���
+(1� n) i ((div�)� A����)� +

�
�inA��;�
�
�� � 2iA��H��

�
��

+
�
in (divA)
 ���
 + inA
����
;��

�
��
+ (2iA�� (div�)��)�� :

By commutation relation again

����;0� = (div�)�;0 + A������;�� � A��;������ + (divA)� ����

and
(div�)�;0�� = (div�)�;��0 + (div�)�;� A���� + (div�)� (divA)�� :

Taking covariant derivative

����;0��� = (div�)�;0�� +
�
A������;��

�
��
� (A��;������)�� + ((divA)� ����)�� :

Hence
i (div�)�;0�� + i (div�)�;��0 � 2i����;0���
= 2i (div�)�;0�� � i (div�)�;� A���� � i (div�)� (divA)��
�2i (div�)�;0�� � 2i

�
A������;��

�
��

+2i (A��;������)�� � 2i ((divA)� ����)��
= �i (div�)�;� A���� � i (div�)� (divA)�� � 2i

�
A������;��

�
��

+2i (A��;������)�� � 2i ((divA)� ����)�� :
So (5.20) becomes

(5.21)

�
1
4
@
@t
��b

�
(div�)�;��

= �i (div�)�;� A���� � i (div�)� (divA)��
+
�
�2i

�
A������;��

�
��
+ 2i (A��;������)��

�
+(1� n) i ((div�)� A����)� +

�
�inA��;�
�
�� � 2iA��H��

�
��

+
�
in (divA)
 ���
 + inA
����
;��

�
��

+2iA�� (div�)��;�� � 2i (divA)�;�� ����:

Now we deal with the term
�
�2i

�
A������;��

�
��
+ 2i (A��;������)��

�
.
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�2i
�
A������;��

�
��
+ 2i (A��;������)��

= �2iA��;������;�� � 2iA������;���� + 2iA��;�������� + 2iA��;������;��
= �2i

�
A������;���� � A��;��������

�
= �2iA�� (div�)��;�� + 2A��h���A��������
�2nA��A�������� � 2A��A��������
+2 kAk2H + 2i���� (divA)�;�� + 2n����A����A�� � 2����h��� kAk

2

= �2i
�
A�� (div�)��;�� � ���� (divA)�;��

�
;

where we have used the following commutation relations in third equality

����;����
= ����;���� + ih���A�������� � ih���A�������� � iA�������� + iA��������
= (div�)��;�� + ih���A�������� � niA�������� � iA�������� + iA����H

and
A��;����
= A��;���� + ih���A����A�� � ih���A����A��
+ih���A����A�� � ih���A����A��

= (divA)�;�� � niA����A�� + ih��� kAk2 :
Next

(1� n) i ((div�)� A����)� +
�
�inA��;�
�
�� � 2iA��H��

�
��

+
�
in (divA)
 ���
 + inA
����
;��

�
��

= (1� n) i (div�)�;�A���� + (1� n) i (div�)� (divA)��
�2i (divA)�H�� � 2iA��H��;�� + in (divA)
;�� ���
 + in (divA)
 (div�)�


+in
�
A�� (div�)��;�� � ���� (divA)�;��

�
:

All these imply �
@
@t
� 4�b

�
(div�)�;��

= 4ni
�
�A���� (div�)�;� + A�� (div�)��;��

�
+4ni

�
� (div�)� (divA)�� + (divA)
 (div�)�


�
�8i (divA)�H�� � 8iA��H��;��

= �8nIm(A�� (div�)��;�� + (divA)
 (div�)�
)
�8i (divA)�H�� � 8iA��H��;��:

Therefore �
@
@t
� 4�b

� �
(div�)�;�� + (div�)��;�

�
= �16nIm(A�� (div�)��;�� + (divA)
 (div�)�
)
+16Im

�
(divA)�H�� + A��H��;��

�
:

�

Combining Lemma 5.2 and Lemma 5.3, we have
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Lemma 5.4. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M � [0; T ): Then�

@
@t
� 4�b

�
Z

= k1
�
1
2
Tor II + (Tor I)� V�� + (Tor I)�� V�

�
+8k1

�
�i����;0�V�� + i����;0��V�

�
�4k1R


� (div�)r V�� � 4k1R
�

�� (div�)�
 V�

+k1 (div�)�
�
@
@t
� 4�b

�
V�� + k1 (div�)��

�
@
@t
� 4�b

�
V�

�8k1
�
(div�)�;
 V��;�
 + (div�)�;�
 V��;
 + (div�)��;�
 V�;
 + (div�)��;
 V�;�


�
+k1

��
@
@t
� 4�b

�
V��
�
V����� + k1

��
@
@t
� 4�b

�
V�
�
V������

+4k1V��V�

�
2R��
����
�� �R�
 �����
 �R


��
��

�
�8k1�a��;
 (V��V�)�
 � 8k1�a��;�
 (V��V�)

�8k1���� (V��;
V�;�
 + V��;�
V�;
)� H

t2
:

Now we are going to show that the Harnack quadratic Z is nonnegative for all time. First
we modify Z with small perturbation by ~� where e���� = ���� + "h��� and de�ne

(5.22)

bZ := k1
2
h�

��
�
r�� (div�)� +r� (div�)��

�
+k1

h
h�

�� (div�)� V�� + h�
�� (div�)�� V�

i
+k1h

���h

�� (���� + "h���)V��V
 +

H+"n
t
:

Let V be the vector �eld which minimizes bZ: Then the following lemma holds
Lemma 5.5. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) on M � [0; T ): Then

(5.23)

�
@
@t
� 4�b

� bZ
= k1

�
1
2
Tor II + (Tor I)� V�� + (Tor I)�� V�

�
�8k1i����;0�V�� + 8k1i����;0��V�
+8k1e����r
V�r�
V�� + 8k1V��V�R��
����
��

+e���� hp8k1r�
V� �
p
k1
8t
h��


i hp
8k1r
V�� �

p
k1p
8t
h
��

i
�2 bZ

t
+ 8�k1

8t2
(H + "n):

Proof. The �rst variation formula gives

(5.24) (div�)� + e����V� = 0; and (div�)�� + e�
��V�
 = 0:
Di¤erentiating it we have that

(5.25)

rs (div�)� + (rs����)V� + e����rsV� = 0;
rs (div�)�� + (rs����)V�� + e����rsV�� = 0;
r�s (div�)�� + (r�s����)V�� + e����r�sV�� = 0;
r�s (div�)� + (r�s����)V� + e����r�sV� = 0:



45

Using above equations we can rewrite formula of Lemma 5.4 into following�
@

@t
� 4�b

�
Z

= k1

�
1

2
Tor II + (Tor I)� V�� + (Tor I)�� V�

�
+8k1

�
�i����;0�V�� + i����;0��V�

�
�8k1

h
(div�)�;
 V��;�
 + (div�)�;�
 V��;
 + (div�)��;�
 V�;
 + (div�)��;
 V�;�


i
+8k1V��V�R��
����
�� � 8k1�a��;
 (V��V�)�
 � 8k1�a��;�
 (V��V�)

+8k1 ((r
 (div�)� + e����r
V�)V��;�
 � k1 (r
 (div�)�� + e����r
V��)V�;�
)

+8k1

�
(r�
 (div�)� + e����r�
V�)V��;
 +

�
r�
 (div�)�� + e����r�
V��

�
V�;


�
�8k1���� (V��;
V�;�
 + V��;�
V�;
)�

H

t2
:

Hence �
@

@t
��b

� bZ
= k1[

1

2
Tor II + (Tor I)� V�� + (Tor I)�� V�]

�k1 � 2i����;0�V�� + k1 � 2i����;0��V� + k1 � 8e����r
V��r�
V�

+k1 � 8e����r
V�r�
V�� + k1 � 8V��V�R��
����
�� �
H + "n

t2
:(5.26)

It follows from (5.24) again that we can rewrite bZ as following
(5.27) bZ = k1

2

�
�e���
r��V
 � e�
��r�V�


�
+
H + "n

t

which is

(5.28)
H + "n

t2
=
bZ
t
+
k1
2t

�e���
r��V
 + e�
��r�V�

�
:

Thus �
@
@t
��b

� bZ
= k1[

1
2
Tor II + (Tor I)� V�� + (Tor I)�� V�]

�8k1i����;0�V�� + 8k1i����;0��V� + 8k1V��V�R��
����
��
+8k1e����r
V��r�
V� + 8k1e����r
V�r�
V��
�k1
2t

�e���
r��V
 + e�
��r�V�

�
� bZ

t
:
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Therefore (5.23) follows from the following :

8k1e����r�
V�r
V�� � k1
2t
(e����r��V� + e����r�V��)

= e���� hp8k1r�
V� �
p
k1p
8t
h��


i hp
8k1r
V�� �

p
k1p
8t
h
��

i
�1

t

�
k1
8t
(H + "n)� k1

2
(e����r��V� + e����r�V��)

�
= e���� hp8k1r�
V� �

p
k1p
8t
h��


i hp
8k1r
V�� �

p
k1p
8t
h
��

i
� bZ

t
+ 8�k1

8t2
(H + "n):

�

Lemma 5.6. Let M be a complete strictly pseudoconvex CR (2n+ 1)-manifold. Let f (x; t)
be the subsolution of the heat equation satisfying�

@

@t
��b

�
f (x; t) � 0 on M � [0; T )

with f (x; 0) � 0 on M. If Z T

0

Z
M

f 2 (x; t) e�ar
2

d� (x) dt <1;

then f (x; t) � 0:

Proof. The proof can be easily modi�ed into CR case, please refer to theorem 1.2 of [NT3].
�

Lemma 5.7. Let M be a closed strictly pseudoconvex CR (2n+ 1)-manifold with vanishing
torsion. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-Laplacian
heat equation (5.2) onM�[0; T ) with ����;0 (x; 0) = 0 at t = 0: In additional ifM is complete
noncompact, we assume that

(5.29)
Z T

0

Z
M

e�ar
2 krT� (x; t)k2 d�dt <1:

Then ����;0 (x; t) = 0 for t > 0:

Proof. Since the torsion is vanishing, by CR Bianchi identity ([L1])

R��
���;0 = 0 = R
��;0

and ([CKL1])
[�b; T ] = 0:

Thus
@

@t
����;0 = 4

�
�b����;0 + 2R��
����
��;0 � (R
�����
;0 +R��
�
��;0)

�
:

(i) If M is closed, by the maximum principle, we obtain ����;0 (x; t) = 0 for all t > 0:
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(ii) IfM is complete noncompact, since kT�k2 is a subsolution of heat equation as following�
@
@t
��b

�
krT�k2

=
�
@
@t
��b

�
����;0����;0h���h��� + ����;0

�
@
@t
��b

�
����;0h���h���

�2����;0
����;0�
h���h���
= 2

�
2R��
����
��;0 �R
�����
;0 �R��
�
��;0

�
����;0h���h���

�2����;0
����;0�
h���h���
� 0;

where we use the condition of nonnegativity of CR bisectional curvature and symmetry of
� tensor in the third inequality as following�

2R��
����
��;0 �R
�����
;0 �R��
�
��;0
�
����;0h���h���(5.30)

= 2R��
����
��;0����;0 �R
�����
;0����;0 �R��
�
��;0����;0

= 2R���������� � 2R
�
 (�
)
2

= �R������(�� � ��)
2

� 0:

Here we diagonalize �
��;0 (since symmetric) and denote ����;0 = ��:
By assumption (5.5), we can apply the maximum principle as in Theorem 5.6 to obtain

T� (x; t) = 0 for all t < T: �
Theorem 5.7. Let M be a closed strictly pseudoconvex CR (2n + 1)-manifold with non-
negative CR bisectional curvature. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the
CR Lichnerowicz-Laplacian heat equation (5.2) on M � [0; T ) with � (x; 0) � 0 at t = 0:
In additional if M is complete noncompact, we assume that � (x; t) satis�es extra conditions
(5.4) and

(5.31)
Z
M

e�ar
2 k� (x; 0)k d� <1;

Then � (x; t) � 0 for t > 0:
Proof. (i) For M is closed, by Hamilton�s tensor maximum principle, we only need to check
for v 2 T 1;0 (M) such that ����v� = 0; (v�� = v�), we have

2R��
����
�� (t) v��v� �R
�����
 (t) v��v� �R��
�
�� (t) v��v�
= 2R��
����
�� (t) v��v�
� 0

by curvature assumption.
(ii) For M is complete, The positivity of � (x; t) follows from Theorem 11.6 of [NN] by

assuming extra conditions (5.4) and (5.31). �
Lemma 5.8. Let M be a complete strictly pseudoconvex CR (2n+1)-manifold with nonneg-
ative CR bisectional curvature and vanishing torsion. Moreover we assume rT� (x; t) = 0
for all t 2 [0; T ) and Z T

�

Z
M

e�ar
2 k� (x; t)k2 d�dt <1;
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for some a > 0 and any � > 0, then

(5.32)
Z T

�

Z
M

e�ar
2 kdiv� (x; t)k2 d�dt <1

and

(5.33)
Z T

�

Z
M

e�ar
2 krdiv� (x; t)k2 d�dt <1:

Proof. Since bisectional curvature is nonnegative, we have

(5.34)

�
@
@t
��

�
k�k2

= 2
�
2R��
����
�� (t) � (t)��� �R
�����
 (t) � (t)��� �R��
�
�� (t) � (t)���

�
� 2 hr�;r�i

� �kdiv�k2 ;
where we have used (5.30) for the last inequality. Let p be an reference point on M and

� be a cut-o¤ function such that � = 0 for d(x; p) > 2R or t � �
2
; and � = 1 as d (x; p) < R

for t � �. Then Z T

�

Z
M

kdiv�k2 �2d�dt

�
Z T

�

Z
M

�
�� @

@t

�
k�k2 �2d�dt

=

Z T

�

Z
M

� k�k2 �2d�dt+
Z
M

k�k2 (x; 0)�2d�

�
Z
M

k�k2 (x; T )�2d�+
Z T

0

Z
M

k�k2 (x; T )
�
�2
�
t
d�dt

�
Z T

�

Z
M

k�k2
�
�2
�
t
� 2�



rk�k2 ;r�

�
J;�
d�dt:(5.35)

On the other hand, as before in normal coordinate, we have

rk�k2

2 � 2
X



k�k2
 k�k
2
�


� 2
X



X
�;�

�
����;
���� + ��������;


�X
�;�

�
����;�
���� + ��������;�


�
� 8

X



X
�;�

����;
��������;�
����

� 8 k�k2
X
�;�;


����;
����;�


� 8 k�k2
X
�;�;


������;
��2 + ������;�
��2
2

� 8n k�k2 kdiv�k2 :
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Then (5.35) becomes

(5.36)
R T
�

R
M
kdiv�k2 �2d�dt

�
R T
�

R
M
k�k2

�
�2
�
t
+ 2
p
8n� k�k kdiv�k jr�j d�dt:

By ab � "a2 + 1
4"
b2;R T

�

R
M
2
p
8n� k�k kdiv�k jr�j d�dt

� 32n"
R T
�

R
M
k�k2 jr�j2 d�dt+ 1

4"

R T
�

R
M
�2 kdiv�k2 d�dt:

Let " = 1
2
and combine with (5.36)Z T

�

Z
M

kdiv�k2 �2d�dt � 32n
Z T

�

Z
M

k�k2
�
jr�j2 +

�
�2
�
t

�
d�dt

and then Z T

�

Z
Bp(R)

kdiv�k2 d�dt � C

Z T

�

Z
Bp(2R)

k�k2 d�dt;

where C depend on n and jr�j : This implies (5.32).
Next following the same process as above with the fact that rT� (x; t) = 0 for all t and

the torsion is vanishing, we have the similar estimate as in (5.34)�
@

@t
��

�
kdiv�k2 � �krdiv� (x; t)k2

and Z T

�

Z
M

e�ar
2 krdiv� (x; t)k2 d�dt � C

Z T

�

Z
M

e�ar
2 kdiv� (x; t)k2 d�dt:

This completes the proof. �

Proof of Theorem 5.1 :

Proof. Since the torsion is vanishing, it follow from Lemma 5.5 and Lemma 5.7�
@

@t
� 4�b

�
t2 bZ � 0

for the vector �eld which minimizes bZ and 0 < k1 � 8: Since ~���� � "h��� on M � [0; T ), by
�rst and second variation formula of Z (5.24,5.25), we have

kV k � ke� � (div�)�k � C (") kdiv�k

and

krsV�k �


e��1 � rs (div�)� + e��1 � (rs����)V�




� C (") krdiv�k+ C (") kdiv�k2 :
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Hence 


t2 bZ


2 � t2


e���
r��V




+ tH + t"n

� t2



�e���
e��1
��r�� (div�)� � e���
e��1
�� �r������

�
V�




+ t k�k+ t"n

� t2 kr�� (div�)�k+ t2 k(div�)�� V�k+ t k�k+ t"n

� t2 krdiv�k2 + t2 kdiv�k2 + t2 kV k2 + t k�k+ t"n

� t2 krdiv�k2 + t2 kdiv�k2 + C (")2 kdiv�k2 + t k�k+ t"n:

By lemma 5.8

(5.37)
Z T

0

Z
M

e�ar
2



t2 bZ


2 d�dt <1:

But t2 bZ = 0 at t = 0: By the maximum principle as in Lemma 5.6, we have bZ � 0 for any
(1; 0) vector �eld V: Let "! 0; we have Z � 0: �

5.3. Nonlinear Version for Li-Yau-Hamilton Inequality. As an application of Theo-
rem 5.1, we derive the positivity of Harnack quantity of the CR Lichnerowicz-Laplacian heat
equation (5.2) coupled with the CR Yamabe �ow (5.7). For simplicity, we work the CR
Harnack inequality on a closed strictly pseudoconvex spherical CR 3-manifold.

De�nition 5.1. Let (M;J; �) be a closed pseudohermitian 3-manifold. We call a CR struc-
ture J spherical if Cartan curvature tensor Q11

(5.38) Q11 =
1

6
R;11+

i

2
RA11 � A11;0 �

2i

3
A
11;

_
11

vanishes identically. Here R is the Tanaka-Webster scalar curvature and A11 is the pseudo-
hermitian torsion. Note that (M;J; �) is called a closed spherical pseudohermitian 3-manifold
if J is a spherical structure. We observe that the spherical structure is CR invariant
and a closed spherical pseudohermitian 3-manifold (M;J; �) is locally CR equivalent to
(S3; Jcan; �can):

Lemma 5.9. ([CC]) 1. Let
�
M3; J;

0

�

�
be a closed pseudohermitian 3-manifold with posi-

tive initial Tanaka-Webster curvature
0

R(x) > 0. Then

R (x; t) > 0

is preserved under the CR Yamabe �ow (5.7) on M � [0; T ). Here R (x; 0) =
0

R(x) > 0:

2. Let
�
M3; J;

0

�

�
be a closed spherical pseudohermitian 3-manifold with vanishing initial

torsion
0

A11(x) = 0. Then
A11 (x; t) = 0

is preserved under the CR Yamabe �ow (5.7) on M � [0; T ). Here A11 (x; 0) =
0

A11(x) = 0:
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Lemma 5.10. Under the CR Yamabe �ow (5.7), we have

(5.39)
@

@t
h��� (t) = �2Rh��� and

@

@t
h��
 (t) = 2Rh��


and

(5.40)
@

@t
���� (t) = �2R;��

�
� � 2R;��

�
� and

@

@t
����� (t) = 2R

;�h���:

Proof. For � = e2f �̂ with �(x; 0) = e2f(x;0)�̂ =
0

�, the CR Yamabe �ow is equivalent to

(5.41)
@

@t
f (t) = �R (t) :

Moreover, as in ([L1]) we choose admissible coframe
n
�� = �̂

�
+ 2if��̂

o
and the Levi form

is given by the matrix h��� = e2f ĥ���, then

@

@t
h��� (t) = �2Rh���:

On the other hand, since

���� = b���� + 2���f� + 2f����;
by (5.41) we have

@

@t
���� = �2R;��

�
� � 2R;��

�
�

and the other formula can be proved analogously. �

Lemma 5.11. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) coupled with the CR Yamabe �ow (5.7) on M � [0; T ), we
have

(5.42) 1
2
@
@t
(div�)�;�� = I + 1

2
h���h


��
�
r��r


@
@t
����
�

and

(5.43) @
@t

�
h�

�� (div�)� V��

�
= II + h�

��h��
r�

�
@
@t
���

�
V�� + h�

�� (div�)�
@
@t
V��:

Here we denote

I = 2R (div�)�;�� +
�
(1� n)R;
�����
 + (1� n)R;
 (div�)�
 +R;���H +R;�H;��

�
+(1� n)R;�� (div�)� +

1
2
h���h


��
�
r��r


@
@t
����
�

and
II = 4h�

��R (div�)� V�� + 2 (1� n)h�
��R;
���
V�� + 2h

���R;�V��H

+h�
��h��
r�

�
@
@t
���

�
V�� + h�

�� (div�)�
@
@t
V��:
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Proof. We justify the identities by a normal coordinate at one point p with � (p) = 0: By
de�nition of covariant derivative

@

@t
���
;� =

@

@t

�
@����
 � �������
 � �����
����

�
= @�

�
@

@t
���


�
� (�2R;��

�
� � 2R;��

�
� ) ���
 � 2R;��h��
����

= r�

�
@

@t
���


�
� (�2R;��

�
� � 2R;��

�
� ) ���
 � 2R;��h��
����:

Hence

@
@t

�
h�

�� (div�)� V��

�
= h�

�� @
@t

�
h��
���
;�

�
V�� + 2Rh

��� (div�)� V�� + h�
�� (div�)�

@
@t
V��

= h�
��
�
2Rh��


�
���
;�V�� + h�

��h��
 (2R;��
�
� + 2R;��

�
� ) ���
V��

�h���h��
 (2R;��h��
) ����V�� + h�
��h��
r�

�
@
@t
���

�
V��

+2Rh�
�� (div�)� V�� + h�

�� (div�)�
@
@t
V��

= 4h�
��R (div�)� V�� + 2 (1� n)h�

��R;
���
V�� + h�
��2R;�V��H

+h�
��h��
r�

�
@
@t
���

�
V�� + h�

�� (div�)�
@
@t
V��

:= II + h�
��h��
r�

�
@
@t
���

�
V�� + h�

�� (div�)�
@
@t
V��:

Next we compute

@
@t
����;
��

= @
@t

�
@��
�
����;


�
� ���������;
 � �

��
�������;
 � ����
����;�

�
= @��

�
@
@t
����;


�
� 2R;�h�������;
 � ����� @

@t
����;


�
�
�2R;���

��
�� � 2R;���

��
��

�
����;
 � �

��
�� ��

@
@t
����;


�2R;�h��
����;� � ����
 @@t����;�
= @��

�
@
@t
����;


�
� 2R;�h�������;
 + 2R;������;


+2R;������;
 � 2R;�h��
����;�
= r��r


@
@t
���� + 2R;
������ + 2R;
����;��

+2R;����
�� + 2R;��
��;�� � 2R;�������h
��
�2R;�����;��h
�� � 2R;�h�������;
 + 2R;������;

+2R;������;
 � 2R;�h��
����;�;
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so that
1
2
@
@t
(div�)�;��

= 1
2
@
@t

�
h���h


������;
��

�
= 2R (div�)�;�� +

1
2
h���h


�� @
@t
����;
��

= 2R (div�)�;�� +
1
2
h���h


��
�
r��r


@
@t
����
�

+h���h

��
�
R;
������ +R;
����;�� +R;����
�� +R;��
��;�� �R;�������h
�� �R;�����;��h
��

�
+h���h


��
�
�R;�h�������;
 +R;������;
 +R;������;
 �R;�h��
����;�

�
= 2R (div�)�;�� +

�
(1� n)R;
�����
 + (1� n)R;
 (div�)�
 +R;���H +R;�H;��

�
+(1� n)R;�� (div�)� +

1
2
h���h


��
�
r��r


@
@t
����
�

:= I + 1
2
h���h


��
�
r��r


@
@t
����
�
:

�

Lemma 5.12. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) coupled with the CR Yamabe �ow (5.7) on M � [0; T ); we
have
(5.44)

@
@t

h
h�

��h

��
�
���� + "h���

�
V��V


i
= III + 2"Rh��
V��V
 + h�

��h

�� @
@t

�
����V��V


�
;

@
@t
H+2�n

t
= IV + h�

�� @
@t

�����
t

�
;

@
@t
R = (2n+ 2)�R + 2R2;�

@
@t
� 4�b

�
(RH) = (2n� 2) (�bR)H + 4R2H � 8 (R;�H;�� +R;��H;� )

:= V

with

III := 4Rh�
��h


������V��V
 and IV := 2R
H

t
:

Proof. It is by straightforward computation as in the previous Lemma. �

Now we de�ne
ZR = Z + k2RH

with k2 to be determined and Z is

Z :=
k1
2

h
h�

�� (div�)�;�� + conj
i
+ k1

h
h�

�� (div�)� V�� + conj
i
+ k1h

���h

������V��V� +

H

t

as before.

Lemma 5.13. Let ���� (x; t) be a symmetric (1; 1)-tensor satisfying the CR Lichnerowicz-
Laplacian heat equation (5.2) coupled with the CR Yamabe �ow (5.7) on M � [0; T ); we
have �

@
@t
� 4�b

�
ZR

= Y1 + 8k1����r
V�r�
V�� � 2ZR
t
+ 8�k1

8t2
H

+����

hp
8k1r�
V� �

p
k1p
8t
h��
 �

p
k1p
2
Rh���

i hp
8k1r
V�� �

p
k1p
8t
h
�� �

p
k1p
2
Rh
��

i
;
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where

(5.45)

Y1 = k1(�bR)H + k1 (R;�H;�� +R;��H;� )� 8k2 (R;�H;�� +R;��H;� )
+k1 (1� n) (R;
�� +R;��
) ���
 + k2 (2n� 2)�bRH
+
�
4k2 � k1

2

�
R2H + 2k1 (R;�V�� +R;��V�)h
�����


+8k1V��V�R�����
�
�� +
�
2k2 + 2� k1

2

�
RH
t
:

In particular if n = 1; by taking V = 2(8k2+k1)
k1

V , (5.45) becomes

(5.46)
Y1 =

k1
2
[2�bR +



rbR; V

�
+
�
8k2
k1
� 1
�
R2

+
2k21

(8k2+k1)
2R


V 

2 + 2

k1

�
2k2 + 2� k1

2

�
R
t
]H:

Proof. As before we compute�
@
@t
� 4�b

�
ZR

= E + 8����r
V�r�
V��

+����

hp
8k1r�
V� �

p
k1p
8t
h��


i hp
8k1r
V�� �

p
k1p
8t
h
��

i
�2ZR

t
+ 8�k1

8t2
H;

where the extra term E comes from covariant derivative of the Levi metric h�� under the
CR Yamabe �ow and lemma 5.5

E = k1I + k1II + k1III + k1IV + k2V + 8k1V��V�R�����
�
��
= �2k1R����r��V� � 2k1R����r�V�� + k1 (R;�H;�� +R;��H;� )
�8k2 (R;�H;�� +R;��H;� ) + k1(�bR)H
+k1 (1� n) (R;
�� +R;��
) ���
 + k2 (2n� 2) (�bR)H
+4k2R

2H + 2k1 (R;�V�� +R;��V�)h
�����

+8k1V��V�R�����
�
�� + 2

RH
t
:

Rearranging these terms we obtain�
@
@t
� 4�b

�
ZR

= Y1 + 8����r
V�r�
V��

+����

hp
8k1r�
V� �

p
k1p
8t
h��
 �

p
k1p
2
Rh��


i hp
8k1r
V�� �

p
k1p
8t
h
�� �

p
k1p
2
Rh
��

i
+8�k1

8t2
H � 2ZR

t
;

where
Y1 = k1�bRH + k1 (R;�H;�� +R;��H;� )� 8k2 (R;�H;�� +R;��H;� )

+k1 (1� n) (R;
�� +R;��
) ���
 + k2 (2n� 2)�bRH
+
�
4k2 � k1

2

�
R2H + 2k1 (R;�V�� +R;��V�)h
�����


+8k1V��V�R�����
�
�� +
�
2k2 + 2� k1

2

�
RH
t
:

Since ���� is positive de�nite, by (5.24) we haveR;�H;��+R;��H;� = � (R;�V�� +R;��V�)h
�����

so that

Y1 = k1(�bR)H + (8k2 + k1) (R;�V�� +R;��V�)h
�����

+k1 (1� n) (R;
�� +R;��
) ���
 + k2 (2n� 2)�bRH
+
�
4k2 � k1

2

�
R2H + 2k1 (R;�V�� +R;��V�)h
�����


+8k1V��V�R�����
�
�� +
�
2k2 + 2� k1

2

�
RH
t
:
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For n = 1
Y1 =

k1
2
[2�bR +

2
k1
(8k2 + k1) (R;�V;�� +R;��V;� )

+ 2
k1

�
4k2 � k1

2

�
R2 + 8R kV k2 + 2

k1

�
2k2 + 2� k1

2

�
R
t
]H:

Taking V = 2(8k2+k1)
k1

V ,

(5.47)
Y1 =

k1
2
[2�bR +



rbR; V

�
+
�
8k2
k1
� 1
�
R2

+
2k21

(8k2+k1)
2R


V 

2 + 2

k1

�
2k2 + 2� k1

2

�
R
t
]H:

�
Proof of Theorem 5.2 :

Proof. It is known that

2�bR +R2 +
R

t
+ hrbR; V iJ;� = 0

is the equation for a CR Yamabe expanding soliton ([CC]) with the CR vector �eld V . The
Hamilton-type Harnack quantity ( we refer to [H1] for some details) for the CR Yamabe �ow
is de�ned as

Z� (�; V ) = 2�bR +R2 +
R

t
+ hrbR; V iJ;� +

�

8
R kV k2J;�

where � � 1 is to be determined (see Remark 5.2). A straightforward computation for
� = @t � 4�b yields

(5.48)

�Z� (�; V )
= 12R�bR� 4 krbRk2J;� + 4R3 + 2R2=t�R=t2

+R hrbR; V iJ;� + �
4
R2 kV k2J;� +



rbR +

�
4
RV;�V

�
J;�

�8 hrb (rbR) ;rbV iJ;� ��R krbV k2J;� ��
D
rbR;rb

�
kV k2J;�

�E
J;�
:

We prove the theorem by contradiction. Suppose that Z� (�; V ) � 0 at some space-time
point for some V . Then there exists a �rst time t0, a point p0 such that at (p0; t0),

(5.49) Z� (�; V ) = 0:

We can extend V so that at (p0; t0)

V�1;1 = �
4R;�11

�R
� R;1V�1

R
and V1;1 = �

R;1V1
R

:

Then the last three terms of (5.48) become

�8 hrb (rbR) ;rbV iJ;� ��R krbV k2J;� ��
D
rbR;rb

�
kV k2J;�

�E
J;�

= 2�R
���4R;�11�R

+ R;1V�1
R

���2 + 2�R ���R;1V1R

���2 ;
where we have used R;11 = 0 due to Lemma 5.9 and (5.38).
Now if rbR +

�
4
RV 6= 0 at (p0; t0), we extend V by choosing the value of �V at (p0; t0)

to kill all terms on the right-hand side of (5.48) except, say 2R2=t: Then it follows that

0 � @tZ = 4�bZ + 2R
2=� � 2R2=�
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at (p0; t0): This is a contradiction. So we may assume

(5.50) rbR +
�

4
RV = 0

at (p0; t0). By (5.49) and (5.50), we have

(5.51) 2�bR = �R2 � R
t
+ �

8
R kV k2J;�

at (p0; t0): Now combining (5.48), (5.50) and (5.51)

(5.52)

�Z� (�; V )
=
�
�2 + 2

�

�
R3 +

�
�4 + 4

�

�
R2

t

+
�
3��2
4
� (1��)

2

�
R2 kV k2J;� +

�
�1 + 2

�

�
R
t2

+
�
�(1��)2

32
+ �3

32

�
R kV k4J;� �

(1��)
2

RkV k2J;�
t

:

We apply the Young�s inequality for the last term of (5.52) and obtain

(5.53)

�
�1 + 2

�

�
R
t2
+
�
�(1��)2

32
+ �3

32

�
R kV k4J;� �

(1��)
2

RkV k2
t

�
�
�1 + 2

�
� �2

�
R
t2
+
�
�(1��)2

32
+ �3

32
� (1��)2

16�2

�
R kV k4J;� :

This will lead a contradiction again if we can choose � and � to make the RHS of (5.53)
to be positive which is possible by taking �2 = 2��

�
and

�(1��)2

32
+
�3

32
>
(1��)2

16�2
:

That is

�2 � 2� + 1
2
< 0

which is true if 1�
p
2
2
< � < 1 +

p
2
2
: Hence we may choose � = 3

10
: Then we are done. �

Remark 5.2. In the paper of [CC], we have the following Harnack inequality

2�bR +R2 +
R

t
+ hrbR; V iJ;� +

�

8
R kV k2J;� � 0

for � = 1. However, it is not enough to obtain Y1 � 0 unless, say � = 3
10
so that there exist

k1, k2 satisfying (5.57).

Proof of Theorem 5.3 :

Proof. From Lemma 5.9, the vanishing torsion and positive Tanaka-Webster curvature are
preserved under the CR Yamabe �ow. By imitating the argument as in theorem 5.1, Theorem
5.3 if Y1 is nonnegative. To determined Y1 is nonnegative, by Theorem 5.2, we require the
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coe¢ cients in (5.46) satisfy �
8k2
k1
� 1
�

� 1(5.54)

2k21
(8k2 + k1)

2 � 3

80
(5.55)

2

k1

�
2k2 + 2�

k1
2

�
� 1(5.56)

and also we require 0 � k1 � 8: These are equivalent to

(5.57)
8q

160
3
� 1

k2 � k1 � min f8; 4k2; 2k2 + 2g

By choosing k2 = 1 and k1 = 4. We are done.
Note that for n = 1; the CR Lichnerowicz-Laplacian heat equation (5.2) will be the special

form
@

@t
�11 = 4�b�11 + 2R1�1�11 � (R1�1�11 +R1�1�11) = 4�b�11:

Hence (5.9) follows. �

Remark 5.3. 1. Let (M;J;
0

�) be a closed pseudohermitian 3-manifold with vanishing initial

torsion
0

A11(x) = 0, then
0

R;0 (x) = 0. In additional if (M;J) is spherical, then

R;0 (x; t) = 0

under the CR Yamabe �ow (5.7) on M � [0; T ). 2. Let
�
M3; J;

0

�

�
be a closed strictly

pseudoconvex spherical CR 3-manifold. Since R1�1 = Rh1�1; then �1�1 := R1�1 satis�es the CR
Lichnerowicz-Laplacian heat equation (5.2)

@

@t
R1�1 = 4�bR1�1

coupled with the CR Yamabe �ow (5.7) on M � [0; T ) satisfying
A11 (x; t) = 0

and
�1�1;0 (x; t) = R1�1;0(x; t) = 0

for all t:

Proof of Corollary 5.4 :

Proof. It follows from (5.39) that R1�1 = Rh1�1 satis�es
@
@t
R1�1 = ( @

@t
R)h1�1 +R( @

@t
h1�1)

= (4�bR + 2R
2)h11 +R(�2Rh1�1)

= 4(�bR)h11 = 4�b(Rh11)
= 4�bR11:
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Hence we apply Theorem 5.3 by taking �1�1 := R1�1: We obtain

ZR = 2�bR +R2 + R
t
+ 4 hrbR; V i+ 2R kV k2

= 1
2
(@tR +

2R
t
+ 8 hrbR; V i+ 4R kV k2)

� 0:
In particular, taking V = 0; we have

@

@t
(t2R) � 0

on M � [0; T ): �

6. CR Gap Theorem

In [GW1], [S] and [Y], it is conjectured that a complete noncompact Kähler manifold of
positive holomorphic bisectional curvature of complex dimension m is biholomorphic to Cm.
The �rst result concerning this conjecture was obtained by Mok-Siu-Yau ([MSY]) and Mok
([Mok2]). Let M be a complete noncompact Kähler manifold of nonnegative holomorphic
bisectional curvature of complex dimension m � 2. They proved that M is isometrically
biholomorphic to Cm with the standard �at metric under the assumptions of the maximum
volume growth condition

Vo (r) � �r2m

for some point o 2M; � > 0; r(x) = d(o; x) and the scalar curvature R decays as

R(x) � C

1 + r2+"
; x 2M

for C > 0 and any arbitrarily small positive constant ". Since then there are several further
works aiming to prove the optimal result and reader is referred to [Mok1], [CTZ], [CZ2], [N4]
and [NT2]. A key common ingredient used in the previous works such as [MSY], [N4] and
[NT2] is to solve the so-called Poincare Lelong equation

p
�1@@u = �, for a given d-closed

real (1; 1)- form � and then show that trace(�) = 0 by using (6.1). In particular in [NT2],
Ni and Tam showed that the solution u(x) of

p
�1@@u = Ric is of o(logr(x)) growth with

the extra condition lim infr!1 exp (�ar2)
R
Bo(r)

R2 (y) d� (y) <1 for some a > 0. Then the
result follows from the Liouville theorem for plurisubharmonic functions which asserts that
any continuous plurisubharmonic function with upper growth bound of o(logr(x)) must be
a constant.
In 2012, L. Ni �nally obtained an optimal gap theorem ([N2]) on M with nonnegative

bisectional curvature without the maximum volume growth condition, provided the following
scalar decays

(6.1)
1

Vo (r)

Z
Bo(r)

R (y) d� (y) = o
�
r�2
�
:

In the paper of [N2], L. Ni adapted a di¤erent method which has also succeeded in the
recent resolution of the fundamental gap conjecture in [AC]. The key step is , using a sharp
di¤erential estimate and monotonicity of heat equation deformation of positive (1; 1)-forms as
in [N1], it provided an alternate argument of proving the above mentioned Liouville theorem.
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A Riemannian version of [MSY] was proved in [GW2] shortly afterwards. This part is
concerned with an analogue of CR gap theorem on a complete noncompact strictly pseudo-
convex CR (2n+ 1)-manifold with nonnegative bisectional curvature. Recently, enlightened
by the work of [N1] as above, we obtained the linear trace version of Li-Yau-Hamilton in-
equality for positive solutions of the CR Lichnerowicz-Laplacian heat equation and then CR
monotonicity of heat equation deformation of positive (1; 1)-forms is available in order to
prove the following CR gap Theorem :

Theorem 6.1. LetM be a complete noncompact strictly pseudoconvex CR (2n+1)-manifold
with nonnegative bisectional curvature and vanishing torsion. Then M is �at if

(6.2)
1

Vo (r)

Z
Bo(r)

S (y) d� (y) = o
�
r�2
�
;

for some point o 2 M: Here S (y) is the Tanaka-Webster scalar curvature and Vo (r) is the
volume of the ball Bo (r) with respect to the Carnot-Carathéodory distance. As a consequence
if M is not �at, then

lim inf
r�!1

r2

Vo (r)

Z
Bo(r)

S (y) d� (y) > 0

for any o 2M:

Here we adapt the method as in [N2]. Below is the main idea in our proof. We �rst work
on degenerated parabolic systems in CR manifolds which is di¤erent to Kähler manifolds :�

@
@t
�(x; t) = �H�(x; t);

� (x; 0) = Ric(x) � 0:

Here �H is the CR Hodge-Laplacian operator, Ric(x) = iR����
� ^ �� is the pseudohermitian

Ricci form of a strictly pseudoconvex CR (2n+ 1)-manifold.
LetM be a complete noncompact strictly pseudoconvex CR (2n+1)-manifold with nonneg-

ative bisectional curvature and vanishing torsion. It follows from Proposition 6.1 that there
exists a long time solution �(x; t) with �(x; t) � 0 onM�[0;1):Now let u(x; t) = �(�) which
is nonnegative and satis�es the CR heat equation with u(x; 0) = S(x): Li-Yau-Hamilton Har-
nack quantity (6.21) and monotonicity property (6.35) with vanishing mixed-term implies
that tu (x; t) is nondecreasing in t for any x. Finally, the assumption (6.2) and CR moment
type estimate (6.12) imply limt!1 tu (x0; t) = 0. Hence the monotonicity and maximum
principle imply tu (x; t) � 0 for all t > 0 and any x 2 M . The �atness then follows from
u (x; 0) = 0 which is clear by continuity.
This chapter is organized as follows. In section 6:1, we obtain the CR moment type

estimate which is the �rst key estimate for the proof of main theorem. In section 6:2; we
relate the linear trace Li-Yau-Hamilton type inequality of the CR Lichnerowicz-Laplacian
heat equation to a monotonicity formula of the heat solution. In section 6:3; we prove the
CR optimal gap Theorem.

6.1. CRMoment-Type Estimates. Let (M;J; �) be a strictly pseudoconvex CR (2n+1)-
manifold. In our recent paper ([CCT] and [CCF]), we consider the CR Hodge-Laplacian

�H = �
1

2
(�b +�b)
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for Kohn-Rossi Laplacian �b. For any (1; 1)-form �(x; t) = ����
� ^ ��; we study the CR

Hodge-Laplacian heat equation on M � [0; T )

(6.3)
@

@t
�(x; t) = �H�(x; t):

It follows from the CR Bochner-Weitzenbock Formula ([CCF]) that the CR parabolic equa-
tion (6.3) is equivalent to the CR analogue of Lichnerowicz-Laplacian heat equation :

(6.4)
@

@t
���� = �b���� + 2R��
����
�� � (R
�����
 +R��
�
��):

In this section, we consider the following Dirichlet problem of degenerate parabolic systems
:

(6.5)

8<:
�
@
@t
��H

�
� = 0; on 
� [0;1);

� (x; t) = 0; on @
� [0;1);
� (x; 0) = �ini (x) on 
:

In contrast to Kähler case, the regularity of a solution for �H up to @
 may depend on
geometry around the characteristic point at the boundary ( [J1] and [J2]) in the CR setting.
In fact,

Proposition 6.1. There exists "sweetsop" exhaustion domains 
� such that the solutions
�� of (6.5) are C

�
C2;�

�
�
�;�

1;1
�
; [0; T )

�
.

We will give a detail proof of Proposition 6.1 in Appendix A. After the construction of
the "sweetsop" exhaustion domain 
� for �H as in Proposition 6.1, one is able to apply
semigroup method ([P]) to obtain better regularity of the solution of the CR Lichnerowitz-
Laplacian heat equation (6.5) which depends on regularity of the initial condition. One more
tensor maximum principle below is needed in the proof of main theorem in order to have
nonnegativity of the constructed solution �� if the initial data is nonnegative.

Proposition 6.2. Let (M;J; �) be a strictly pseudoconvex CR (2n + 1)-manifold with non-
negative bisectional curvature. Let 
 be bounded domain in M: Assume that � (x; t) is a
(1; 1)-form satis�es 8<:

�
@
@t
��H

�
� = 0; on 
� [0;1);

� (x; t) � 0; on @
� [0;1);
� (x; 0) � 0 on 
:

Then � (x; t) � 0 on 
� [0;1):

Proof. Similar to proposition 11.1 in [NN]. �
The �rst key estimate for the proof of main theorem is the moment type estimate. This

estimate is �rst introduced by L. Ni [N3]. By using Li-Yau type heat kernel estimate, he
proved that a nonnegative solution u(x; t) of the heat equation are td=2 growth if and only
if the average function k (x; r) := 1

V (r)

R
Bx(r)

f (y) dy of the initial data f (y) grows as rd

in a certain complete Kaehler manifold. In our CR setting, we only has the CR moment
type estimate for a nonnegative heat solution which can be express as Ptf for a smooth
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bounded function f on M . In contrast to the Kähler case, in general, we do not know if any
nonnegative heat solution could hold.
To introduce our version, we will follow from semigroup method as in [M] ( also [BBGM]).

It is known that the heat semigroup (Pt)t�0 is given by

Pt =

Z 1

0

e��tdE�

for the spectral decomposition of �b = �
R1
0
�dE� in L2 (M). It is a one-parameter family

of bounded operators on L2 (M) : We denote

Ptf (x) =

Z
M

p (x; y; t) f (y) d� (y) ;

for f 2 C10 (M) : Here p (x; y; t) > 0 is the so-called symmetric heat kernel associated to
Pt. Due to hypoellipticity of �b; the function (x; t)! Ptf (x) is smooth on M � (0;1) :
In the following we use V (r) and Bx (r) denote the volume of a unit ball with respect to

the Carnot-Carathéodory distance and measure d� = � ^ (d�)n. We recall some facts from
[M] ( also [BG] and [BBGM]). For f; g; h 2 C1 (M) ; we de�ne
(i)

� (f; g) = 1
2
�b (fg)� f�bg � g�bf:

(ii)
�2 (f; g) = 1

2
[�b� (f; g)� � (f;�bg)� � (g;�bf)] :

(iii)
�Z (fg; h) = f�Z (g; h) + g�Z (f; h) :

(iv)
�Z2 (f; g) = 1

2

�
�b�

Z (f; g)� �Z (f;�bg)� �Z (g;�bf)
�
:

Here we denote � (f) = � (f; f) ; �2 (f) = �2 (f; f) ; �
Z (f) = �Z (f; f) and �Z2 (f) =

�Z2 (f; f) : Note that in a complete strictly pseudoconvex CR (2n+1)-manifold with vanishing
torsion. One can have � (f; f) = (rbf;rbf) and �2 (f) = kr2

bfk2 + Ric (rbf;rbf) +
n
2
krTrbfk2 and �Z (f; g) = (rTf;rTg).

De�nition 6.1. We say that (M;J; �) satis�es the generalized curvature-dimension inequal-
ity CD (�1; �2; �; d) with respect to �b if there exist constants �1 a real number, �2 > 0,
� � 0, and d � 2 such that the inequality

�2(f) + ��Z2 (f) �
1

d
(�bf)

2 + (�1 �
�

�
)�(f) + �2�

Z(f)

holds for every f 2 C1(M) and every � > 0:

We de�ne

(6.6) D := d

�
1 +

3�

2�2

�
and

��1 = max (��1; 0) :
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Lemma 6.1. (i) ([M, Theorem 4]) Let (M;J; �) be a complete strictly pseudoconvex CR
(2n+ 1)-manifold of vanishing torsion with

Ric � �1:

Then M satis�es the generalized curvature-dimension inequality CD
�
�1;

n
2
; 1; 2n

�
with �2 =

n
2
; � = 1 and d = 2n. Moreover for any given R0 > 0; there exists a constant C (d; �; �2) > 0
such that

� (B (x;R)) � C (d; �; �2)
exp

�
2d��1 R

2
0

�
RD
0 p (x; x;R

2
0)
RD exp

�
2d��1 R

2
�

for every x 2 M and R � R0. In particular if M is a complete strictly pseudoconvex CR
(2n + 1)-manifold of nonnegative Ricci curvature and vanishing torsion, then there exists a
constant C1 > 0 such that

(6.7) � (B (x;R)) � C1
RD
0 p (x; x;R

2
0)
RD

for R � R0:
(ii) ([BG]) Let (M;J; �) be a complete strictly pseudoconvex CR (2n + 1)-manifold of

nonnegative Ricci curvature and vanishing torsion. Then, for any " > 0; there exists a
constant C3(d; �2; �; ") > 0 such that

(6.8) p (x; y; t) � C (d; �2; �; ")

�
�
B
�
x;
p
t
�� 1

2 �
�
B
�
y;
p
t
�� 1

2

exp

�
�d

2 (x; y)

(4 + ") t

�
:

(iii) ([BBGM]) Let (M;J; �) be a complete strictly pseudoconvex CR (2n+ 1)-manifold of
nonnegative Ricci curvature and vanishing torsion. Then there exists a constant C2 > 0 such
that

(6.9) p
�
x; x; 2R2

�
� C2
� (B (x;R))

:

Remark 6.1. Let (M;J; �) be a complete strictly pseudoconvex CR (2n+1)-manifold of non-
negative Ricci curvature and vanishing torsion. (6.7) and (6.9) together imply the doubling
property. That is

(6.10) � (B (x;R)) � C1
RD0 p(x;x;R20)

RD � C( R
R0
)D�

�
B
�
x; R0p

2

��
:

By taking R0 = Rp
2
; then there exists a constant C4 > 0 such that

(6.11) � (B (x;R)) � C4 (n;D)�
�
B
�
x; R

2

��
:

Applying above Lemma 6.1, we are able to prove the following moment type estimate for
those solution of form Ptf .

Theorem 6.2. Let (M;J; �) be a complete strictly pseudoconvex CR (2n + 1)-manifold of
nonnegative Ricci curvature and vanishing torsion. Assume that u is a solution of CR heat
equation

@

@t
u = �bu
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such that
u (x; t) = Ptf

for a nonnegative bounded function f . Assume that for any a > �D� 2 (where D = 2n+ 6
is de�ned in 6.6), we have

1

V (r)

Z
Bx(r)

f (y) d� (y) � Ara

for a constant A > 0 and r � R � 1. Then there exists a constant C (n; d) such that
(6.12) u (x; t) � C (n; d)At

a
2

for all t � R2.

Proof. Let � = d(x;y)p
t
: Thus

(6.13) Bx

�p
t
�
� By

�
(� + 1)

p
t
�
:

It follow from (6.11) and (6.13) that

Vx
�p

t
�
� Vy

�
(� + 1)

p
t
�
� C (d; �; �2) (� + 1)

D Vy
�p

t
�
:

That is,

(6.14)
Vx(

p
t)

Vy(
p
t)
� C (d; �; �2) (� + 1)

D :

We can rewrite (6.8) as

(6.15)

p (x; y; t) � C(d;�2;�;")

�(B(x;
p
t))

1
2 �(B(y;

p
t))

1
2
exp

�
�d2(x;y)
(4+")t

�
� C(d;�2;�;")

�(B(x;
p
t))

�
�(B(x;

p
t))

�(B(y;
p
t))

� 1
2

exp
�
�d2(x;y)
(4+")t

�
� C(d;�2;�;")

�(B(x;
p
t))
exp

�
�d2(x;y)
(4+")t

�
:

Then, based on (6.14) and (6.15), Theorem 6.2 follows from the proof of Theorem 3.1 in
[N3] in case of u (x; t) = Ptf for a nonnegative bounded function f . The use of volume
comparison can be replace by (6.10). �
6.2. CRLichnerowicz-Laplacian heat equation. In this section, we �rst relate the linear
trace Li-Yau-Hamilton type inequality of the CR Lichnerowicz-Laplacian heat equation to
a monotonicity formula of the heat solution. More precisely, let ���� (x; t) be a symmetric
(1; 1) tensor satisfying the CR Lichnerowicz-Laplacian heat equation

(6.16)
@

@t
���� = �b���� + 2R��
����
�� � (R
�����
 +R��
�
��)

on M � [0; T ): As in the paper of [CCF], we de�ne following Harnack quantity

Z (x; t) (V ) := k1

�
1

2

�
(div�)�;�� + (div�)��;�

�
+ (div�)� V�� + (div�)� V�� + V��V�����

�
+
H

t

for any vector �eld V 2 T 1;0 (M) ; H = h������ and 0 < k1 � 8. We proved
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Theorem 6.3. ([CCF]) Let (M;J; �) be a complete strictly pseudoconvex CR (2n + 1)-
manifold of nonnegative bisectional curvature and vanishing torsion. Let ���� (x; t) be a
symmetric (1; 1) tensor satisfying the CR Lichnerowicz-Laplacian heat equation (6.16) on
M � (0; T ) with

���� (x; 0) � 0;
and

rT� (x; 0) = 0:

Then
Z (x; t) � 0

on M � (0; T ) for any (1; 0) vector �eld V and 0 < k1 � 8 if there exists constant a > 0 such
that R T

0

R
M
e�ar

2 k� (x; t)k2 d�dt <1;(6.17) R T
0

R
M
e�ar

2 krT� (x; t)k2 d�dt <1;(6.18) R
M
e�ar

2 k� (x; 0)k d� <1:(6.19)

Let � be a (p; q)-form. De�ne contraction operator � : �p;q ! �p�1;q�1 as follow

(��)�1:::�p�1��1:::��q�1 =
1p
�1 (�1)

p�1 h�
�����1:::�p�1����1:::��q�1:

Then it is a straightforward computation, we have

Lemma 6.2. ([CCT]) Let (M;J; �) be a strictly pseudoconvex CR (2n + 1)-manifold. We
have the Kähler type identities
(i)

[@b;�] = �
p
�1�@�b and

�
�@b;�

�
=
p
�1@�b :

(ii)
[ �@b;�b] = 2iT �@b and [@b;�b] = 0:

(iii) �
�@b;�H

�
= �iT �@b and [�;�H ] = 0:

Lemma 6.3. Let � be a nonnegative (1; 1)-form. De�ne Q (�; V ) as
(6.20)

Q (�; V; k2) = k2

�
1

2
p
�1

�
�@�b@

�
b � @�b

�@�b
�
�+ 1p

�1

�
�@�b�
�
V
� 1p

�1 (@
�
b�)V + �V; �V

�
+ ��

t
:

Then this is equivalent to

Q (�; V; k2) = k2

�
1
2

�
(div�)�;�� + (div�)��;�

�
+ (div�)� V�� + (div�)� V�� + ����V�V��

�
+ H

t

for a symmetric (1; 1)-tensor ���� :=
1p
�1����. In particular, by taking V = 0, and k2 = 2,

we have

(6.21) Q (�; V ) = ��H��+
�
�@�b�

�@b + conj
�
�+ u

t

for u = ��:
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Proof. As in [CCF], we have the formula for a (p; q + 1)-form  �
�@�b 
�
�1:::�p��1:::

��q
= (�1)p 1

q+1

Pq+1
i=1 (�1)

ir� �1:::�p��1:::��i�1����i:::��q

and a (p+ 1; q)-form '

(@�b')�1:::�p��1:::��q = (�1)
1
p+1
r��'��1:::�p��1:::��q :

Thus for a (1; 1)-form �; we have

(@�b�)�
 = �r�����


and
�@�b@

�
b� = r


�
r�����


�
:

Then the �rst term of (6.20) become
1

2
p
�1

�
�@�b@

�
b � @�b

�@�b
�
� = 1

2
p
�1
�@�b@

�
b�+ conj:

= 1
2
p
�1r


�
r�����


�
+ conj:

= 1
2

�
(div�)�;�� + conj:

�
We are done. On the other hand, taking V = 0 and k2 = 2, by lemma 6.2 we have

2
2
p
�1

�
�@�b@

�
b � @�b

�@�b
�
� = �@�b [

�@b;�]�� @�b [@b;�]�

= ��@�b �@b��� @�b@b��+
�@�b�

�@b�+ @�b�@b�
= ��H��+ �@

�
b�
�@b�+ @�b�@b�:

Here we use the fact that �@�b f = @�b f = 0 for any scalar function. Then formula (6.21)
follows. �

Remark 6.2. The regularity of the heat solution in Proposition 6.1 and the following Lemma
is used to prove the "mix-term"

�
�@�b�

�@b + conj
�
� in (6.21) vanishing as in (6.35) and (6.36)

which is the key step in the proof of our main theorem.

Lemma 6.4. Let (M;J; �) be a complete strictly pseudoconvex CR (2n + 1)-manifold with
nonnegative bisectional curvature and vanishing torsion. Let � be a solution of the CR
Hodge-Laplace heat equation (6.4). Then



��@b�

 satis�es�
@
@t
��b

� 

��@b�

 � jj�T �@b�jj:

Proof. We have the formula for a (p; q)-form  �
�@b 
�
�1:::�p��1:::

��q+1
= (�1)p

Pq+1
i=1 (�1)

i�1r��i
 �1:::�p��1:::��i�1��i+1:::��q+1 :

So that �
�@b�
�
����


= �r�����
 +r�
����

and �
��@b�

�
�

= ih�

��r�����
 � ih�
��r�
����

= h�
��r�����
 � h�

��r�
����
= (div�)�
 �r�
u:
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Note that ��@b� satis�es the CR Hodge Laplace heat equation, i.e.,�
@
@t
+�H

�
��@b� = ���@b�H�+�H��@b�

= ���H
�@b�+�H��@b�+ i�T �@b�

= [�H ;�]�@b�+ i�T �@b�
= i�T �@b�:

Hence we have�
@
@t
��b

�q

��@b�

2 = ��@b�

k��@b�k �
�
��H��@b���b��@b�

�
+ ��@b�

k��@b�k � i�T
�@b�

= � 1

k��@b�kR���

�
��@b�

�
�

�
��@b�

�
��
+ ��@b�

k��@b�k � i�T
�@b�

where in second line we use formula (3.1) of [CCF] for (1; 0)-form ��@b�. �

Before going any further for the proof of our main theorem, we need two more lemmas.

Lemma 6.5. ([NT2]) Let f � 0 be a function on a complete noncompact Riemannian
manifold Mm with

Rij � � (m� 1)K

for some K � 0: Let

u (x; t) :=

Z
M

H (x; y; t) f (y) dy:

Assume that u is de�ned on M � [0; T ] for some T > 0 and that for 0 < t � T;

(6.22) lim
r�!1

exp

�
� r2

20t

�Z
Bo(r)

f = 0:

and p � 1;
1

Vo(r)

R
Bo(r)

updx

� Cm;p

h
1

Vo(4r)

R
Bo(4r)

fpdx+
�
C2 (K; t)

R1
4r

�
sp
t
+ s2

t

�
exp

�
� s2

40t

�
1

Vo(s)

R
Bo(s)

fd
�
s2

t

��pi
where C2 (K; t) = Cmte

CmKt and Cm is constant only depend on dimension M:

Lemma 6.6. ([Li]) Let (M;J; �) be a complete strictly pseudoconvex CR (2n+ 1)-manifold
and f (x; t) be the subsolution of the heat equation satisfying�

@
@t
��b

�
f (x; t) � 0 on M � [0; T )

with f (x; 0) � 0 on M . Then f (x; t) � 0 for all t < T if there exists a > 0 such thatR T
0

R
M
f 2 (x; t) e�ar

2
d� (x) dt <1:
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6.3. Proof of CR Optimal Gap Theorem. In this section, by using the CR moment
type estimate (Theorem 6.2) and the linear trace LYH inequality (Theorem 6.3), we are able
to prove the CR optimal gap theorem.
Proof of the main theorem:

Proof. Here is the main idea : In the following we �rst use proposition 6.1 to construct ��
on exhaustion domain 
�. Schauder estimates provide the convergence of �� (Step 1) to a
unique solution �. De�ne u := trh� and u is a solution of sublaplacian heat equation with
initial condition S (y). By uniqueness theorem ([D]) of the nonnegative heat solution we
have u(i) ! u. Now this allows us in one hand using trace linear Harnack estimate on trh�
to obtain monotonicity formula

(6.23) (tu)t � 0

which apply to every nonnegative heat solution and on the other hand using moment type
estimate (which only apply to heat solution with Ptf type and f is bounded) on u(i) := Pt�

(i)S
to obtain that

u(i) = o
�
t�1
�
:

Hence as well as u. Combing these results, the initial condition are forced to be zero and
the gap theorem holds.
Note that we derived the monotonicity property (6.23) by lemma 6.3, 6.4, and the vanishing

of mixed term in LYH quantity (6.21). The condition (6.2) is applied while we use Theorem
6.2 for a = �2 to obtain

u = o
�
t�1
�
:

Now we split the detail proof into two steps :
(i) Step 1 : Convergence of �(i)� : Let 
� be an sweetsop exhaustion domains,

�(i) be a cut-o¤ function support in B (2Ri) such that 0 � �(i) � 1, �(i) = 1 in B (Ri) ;

rm1
b r

m2
T �(i)



 � C
Ri
for m1;m2 = 0; 1; 2; m1 +m2 � 1 and some constant C. Note that for

each i, there exists Ni such that for � � Ni; B (2Ri) � 
�. Let �
(i)
� be the solution as in

Proposition 6.1 on 
� for any � � Ni with initial condition �(i)Ric. Now we de�ne

u(i) (x; t) :=
R
M
p (x; y; t) �(i)S (y) d� (y) .

Then u(i) (x; t) satis�es

(6.24) @
@t
u(i) (x; t)��"u

(i) (x; t) = �"2u(i)00 (x; t) ;

where �" = �b + "2T 2 is Riemannian Laplacian with respect to the adapted metric h" :=
h+ "�2�2. Moreover, proposition 6.2 imply �(i)� (x; t) is nonnegative and

(6.25)



�(i)� (x; t)


 � trh�

(i)
� (x; t) � u(i) (x; t) ;

for all � � Ni. Now we estimate u
(i)
00 (x; t) �rst. Since u

(i) (x; t) is a solution of sub-Laplacian
heat equation, we have

@
@t
u
(i)
00 (x; t)��bu

(i)
00 (x; t) = 0
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due to vanishing torsion. We de�ne l(i) (x; t) =
���u(i)00 (x; t)���, and observe that it is a subsolution

of heat equation with initial condition satisfying the followings��l(i) (x; t) (x; 0)��
=

��rTrT�
(i)S (y)

��
� C

Ri
�B2RinRi

S (y) ;

where �B2RinRi (y) is a function with 1 in annulus B (2Ri) nB (Ri) and zero elsewhere. By

maximum principle l(i) (x; t) is controlled by a sub-Laplacian heat solution.
Next we de�ne

g (x; t) :=

Z
M

p (x; y; t)
C

Ri

�B2RinRi
S (y) dy:

By moment type estimate

(6.26) g (x; t) = 1
Ri
o (t�1) ;

where the particular coe¢ cient in o (t�1) does not depend on i. To summarize, we have

(6.27)
���u(i)00 (x; t)��� = l(i) (x; t) � g (x; t) = 1

R2i
o (t�1) :

We return to equation (6.24). Now we restricted on B (r)�[�; T ] and try to obtain estimate
not depend on index i. Now we de�ne

L(i) (x; t) = u(i) (x; t) + "2eT�t sup
B(r)�[�;T ]

g (x; t)

so that L(i) (x; t) satisfy

(6.28) @
@t
L(i) (x; t)��"L

(i) (x; t) � 0:

Applying mean value theorem (Theorem 1.2 in [LT]) to function L(i) (x; t) ; we have

sup
B"((1��)r)�[�;T ]

L(i) � C16

�
1

(�r)2n+3
V"( 2

"2
;2r)

V"(r)

�
r
p
2
"
coth

�
r
p
2
"

�
+ 1
�
exp

�
C17

2
"2
T
��

�
R T
�
ds
R
B"(r)

L(i) (y; s) d�" (y) + (1 + "1) sup
B"(r)

L(i) (�; �) :

Let B" (r) ; d�" (y) denote the ball with radius r and volume element which is respected to
metric h". The above inequality also means

(6.29)

sup
B"((1��)r)�[�;T ]

u(i) � C16

�
1

(�r)2n+3
V"( 2

"2
;2r)

V"(r)

�
r
p
2
"
coth

�
r
p
2
"

�
+ 1
�
exp

�
C17

2
"2
T
��

�
R T
0
ds
R
B"(r)

L(i) (y; s) d�" (y)

+ (1 + "1) sup
B"(r)

u(i) (�; �) + (1 + "1) "
2eT�� sup

B"(r)

g (x; �) :

We only need to estimate the �rst term of (6.29) below, since the other terms are bounded.
We de�ne

L
(i)
" (y; s) :=

R
M
H" (x; y; t)



�(i)S

 (y) d�" (y)
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and again we have

(6.30) L(i) (y; s) � L
(i)
" (y; s) + "2eT supB(r)�[�;T ] g (x; t) � L

(i)
" (y; s) + "2eT

o(t�1)
R2i

:

Now the �rst term of (6.29) is estimated by using (6.30) and Lemma 6.5 as following

(6.31)

1
Vo;"(r)

R
Bo(r)

L
(i)
" (y; t) d�" (y)

� Cm;1
1

Vo;"(4r)

R
Bo;"(4r)



�(i)S

 (y) d�" (y)
+ Cme

Cm
1
"2
t
R1
4r

�
sp
t
+ s2

t

�
exp

�
� s2

40t

�
1

Vo;"(s)

R
Bo;" (s)



�(i)S

 (y) d�" (y) d� s2t � :
The integral

R
Bo;"(4r)



�(i)S

 (y) d�" (y) inside both terms in (6.31) are estimated by as-
sumption (6.2) and is controlled by quantity that not depend on i. Hence (6.29) and (6.31)
imply

(6.32) sup
B"((1��)r)�[�;T ]

u(i) � C
�
"; r; T; n; �(i)S

�
and

(6.33) maxB"(r)�[�;T ] trh�
(i)
� (x; t) � C

�
"; r; T; n; �(i)S

�
.

Now the interior Schauder estimate can be applied to extract a convergent subsequence
�
(i)
�k ! �(i) that satis�es the CR Lichnerowiz-subLaplacian heat equation on [0; T ]. Note that
trh�

(i) (x; 0) = u(i) (x; 0), and by uniqueness of bounded sub-Laplacian heat solution (from
lemma 6.6) we actually have

trh�
(i) (x; t) = u(i) (x; t) :

By (6.24), (6.27), (6.32) and Schauder estimates, there is a subsequence u(ij) ! u and
�(ij) ! � in any �xed compact subset with an arbitrary chosen Hölder norm (by choosing
�0 large for sweetsop domain, see appendix). Note in (6.27) as i goes to in�nity we can
conclude rTrTu (x; t) = 0 and similarly rTu (x; t) = 0 and rT� (x; t) = 0 by using that


�(i)0 


 is a subsolution of sub-Laplacian heat equation as follows�

@
@t
��b

� 


�(i)0 


 = 1


�(i)0 



�
2R��
����0
�� � (R
���0��
 +R��
�0
��)�0���h���h���

�
� 0:

Here we use the facts that bisectional curvature is nonnegative and vanishing torsion. More-
over, requirement for applying maximum principle is garanteed by similar argument as (6.25),
we have

(6.34)



�(i)0 


 (x; t) � C

R
p (x; y; t) jr�jS (y) d� (y) � C

Ri
o (t�1) :

As i goes to in�nity, �0 = 0. However, by now we do not know yet through the subse-
quence the two functions trh� (x; t) and u (x; t) are the same even they have the same initial
condition. One regards both u (x; t) and trh� (x; t) as solutions of Laplacian heat equations
associated to adapted metric (due to rTu (x; t) = rT trh� (x; t) = 0), and the manifold are
seen as Riemannian manifold with Riemannian curvature bounded below by � 1

"2
(Theo-

rem 4.9 in [CC1]). Now by the uniqueness of nonnegative Laplacian heat solution ([D]) on



70

complete manifold with Riemannian Ricci curvature bounded below, we can conclude that

u (x; t) = trh� (x; t) :

Note that u is the unique sub-Laplacian heat solution with rTu (x; t) = 0, and since any
such u we can �nd a sequence of u(i) that satisfy moment type estimates converge to u.
Hence u satisfy the moment type estimate.

(ii) Step 2 : Monotonicity of tu : By our assumptions on Ric, and the upper bound
of � (x; t) by u (x; t) = o (t�1), (6.17), (6.18) and (6.19) in Theorem 6.3 are satis�ed. Hence
by Lemma 6.3 and (6.21), trh� satisfy

(6.35) ut +
�
�@�b�

�@b + conj
�
�+ u

t
� 0:

In the following we are going to prove the mixed terms
�
�@�b�

�@b + conj
�
� of (6.35) vanishing

so the monotonicity

(6.36) (tu)t � 0
follows. Hence

tu(x; t) � 0;
for any x and t > 0. The �atness then follows from u(x; 0) � 0.
In fact, we �rst de�ne �(i) := ��@b�(i) (note �(i) = 1p

�1�
(i)). Then direct calculation shows

that �
@
@t
��b

� 


�(i)�k


2 � �2


r�(i)�k


2 .
We integrate on both sides over 
�k and apply Dirichlet condition (using boundary regularity
in Proposition 6.1). After taking �k !1, we have

(6.37) 2
R t
0

R
M



rb�
(i)


2 (x; s) d�ds � R

M



�(i) (x; 0)

2 d� = R
M



�(i)Ric

2 d�:
Due to



�(i)

 (x; t) � 

rb�
(i)


 (x; t), (6.37) and assumption (6.2) we have for some a0 > 0;

(6.38)
R t
0

R
M
e�a

0r2


�(i)

 (x; s) d�ds <1:

By Lemma 6.4, and direct calculation shows that�
@
@t
��b

� 

�(i)

 (x; t) �



�(i)0 


 :

Since



�(i)0 


 � 


r�(i)0 


 and 


�(i)0 


 (x; t) satisfy 6.34, by Schauder estimates [Si] we have for

any ~" > 0, there exists n~" > 0 such that



�(i)0 


 � 


r�(i)0 


 � ~" for any i � n~". This shows

that for any (x; t) 2 [0; T ) �
@
@t
��b

� 

�(i)

 (x; t) + eT�t~" � 0:

We de�ne v(i) (x; t) as follow

v(i) (x; t) =
R
M
p (x; y; t)



��@b ��(i)Ric�

 (y) d� (y) :
Duo to (6.38) and maximum principle we have

�(i)

 (x; t) + eT�t~" � v(i) (x; t) + eT�t~":
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Since torsion is vanishing, it implies �@bRic = 0 and by nonnegativity of Ricci curvature it
follows that

(6.39)


��@b ��(i)Ric�

 (y) � C

Ri
�B2RinRi

S (y) :

Similarly as (6.26), (6.39) gives that v(i) ! 0 uniformly on any compact subset as i ! 1.
Since ~" is arbitrary, we have

k�k (x; t) = 0:
Finally, as a result we have (tu)t � 0 and then u = o (t�1) : This completes the proof. �

Appendix A.

In this appendix, we construct "nice" domains to avoid the possibility of the bad regularity
for heat solutions in the case of degenerated parabolic systems. In fact, we will give a proof
on existence and regularity result for (1; 1)-form � of the Lichnerowicz-subLaplacian heat
equation. In the proof of main theorem, one required some regularity of the heat solution in
order to prove the mixed terms

�
�@�b�

�@b + conj
�
� of (6.35) vanishing ( then the monotonicity

follows). While we construct heat solution on complete manifolds with exhaustion domains,
we need the interior regularity at least C2;� (
�) and boundary regularity as continuous
function in C

�
�
�
�
. This requirement are needed for Arzela Ascoli theorem and integration

by part in (6.37). In semigroup method, better regularity of evolution equation comes from
the regularity of in�nitesimal generator.
We denote C2;� (
;�1;1) as C2;� sections of �1;1 on bounded domain 
. In our case, it is

�H on Banach space C2;� (
;�1;1)\C
�
�
;�1;1

�
. Note �H = �1

2

�
�b + ��b

�
. Here we denote

u as solution of following Dirichlet problem

(A.1) �b� = g

for g 2 C1 (
;�1;1). First we state some results :

Theorem A.1 (Kohn). Let M be a strictly pseudoconvex CR (2n+1)-manifold. If 1 � q �
n � 1, then k�k21

2
� C

�
(�b�; �) + k�k20

�
for � 2 C1 (�0;q). k:ks stands for the L2 Sobolev

norm of order s.

Remark A.1. 1. From the hypothesis in above theorem it requires n � 2. When n = 1, one
refers to [J1].
2. Even though the operator �b is not �H , in [J2] (see p.146) they actually prove the

case for � = 0. Moreover, we have �H = L� with � = 0 up to lower order terms. Here
L� = ��b + i�T:

The following is the interior and boundary regularity result by Jerison [J1].

Theorem A.2. Let U be the open subset of M containing no characteristic points of @
.
If  ; ' 2 C10 (U),  = 1 in the neighborhood of the support of ', and u satis�es (A.1) with
 g 2 ��

�
�
;�0;q

�
, then '� 2 ��+2

�
�
;�0;q

�
and

k'�k��+2 � c
�
k gk�� + k �kL2

�
:
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When an isolated characteristic boundary point occurs, Jerison proved the regularity result
when the neighborhood have strictly convexity property. The convexity is de�ned by Folland-
Stein local coordinates �(p;�) : U ! Hn, and the boundary near point p is corresponding
to graph ~t =

P
�i~x

2
i +�j~y

2
j + e (~x; ~y), where e (~x; ~y) = O

�
j~xj3 + j~yj3

�
. Strictly convex means

�i; �j > 0 (see eq. (7.4) and A.3 in [J2]). In the following we state the theorem in the form
we want. Reader who is confused can refer to theorem 7.6, Proposition 7.11, and Corollary
10.2 in [J2].

Theorem A.3. Let p be an isolated characteristic point on @
 and in some neighborhood Up
of p the geometry Up\
 is like the domain

�
(x; y; t) :Mc

�
jxj2 + jyj2

�
< t
	
in the Heisenberg

group, where Mc a positive number . Then '� 2 ��+2
�
�
;�0;q

�
, where the best � depends on

Mc. Moreover, as Mc %1, one can choose � %1.

Remark A.2. In Theorem A.3, one required g 2 ��
�
�
;�0;q

�
for � > 2. Moreover, � has

upper bound �0 � 2 , where �0 is an index related to the geometry of the boundary. In [J2],
they proved Mc %1, then �0 %1.

In order to construct a C2;� Lichnerowitz-subLaplacian heat solution, we need the exhaus-
tion domain which satisfy the property above. In the following we prove that it is possible
by perturbing the boundary of exhaustion domain.

Theorem A.4. For any given positive number Mc, there exists exhaustion domains 
� such
that @
� consist only isolated characteristic points with property as in Theorem A.3 with
given Mc.

Proof. We construct the exhaustion domain with smooth boundary arbitrarily. Since @
� is
compact, we de�ne �� the set consisting all the characteristic points. Then the closure of ��
is compact. At each point there exist coordinate Vp such that we can express the boundary
as r (z; t) = t� q (z) + e (x; y) in Bp ("p) for some "p depend on p, where q (z) = �ix

2
i + �jy

2
j

for some real numbers �i; �j. Since injective radius (with respect to some adapted metric)
is uniformly bounded below on @
�, "p can be chosen to not depend on p but � only. These
Folland-Stein coordinate neighborhoods form an open covering for ���.
Now we claim there is a small modi�cation to boundary so that ��� contains only isolated

characteristic points.
Assume Bpi (") are the covering of ���, we can choose "1 < "2 < " such that Bpi ("1) are

still a covering of ���. We start at point p1. First we deform the graph in the coordinate of
Bp1 ("1) to plane t = 0 and smoothly attached to graph on @Bpi ("2). Under the deformation
we keep point p1 as the only characteristic point. This is possible by noticing that we only
need to take q (z) into consideration ( because this term dominate all the other inside small
ball. ) and we only need to consider the case in the Heisenberg group with graph t = q (z)
in Bpi ("). We modify q (z) into new one ~q (z) by de�ne ~q (z) = �maxjzj="2

q (z) in Bpi ("1) and

' (jzj ; �) in Bpi ("2) nBpi ("1) where ' (jzj ; �) is a smooth monotone function in jzj for each �
such that the function smoothly attached to the value q (z) on @Bpi ("2) and ~q (z) = q (z) on
Bpi (") \ Bc

pi
("2). This modi�cation clearly imply the origin is the only characteristic point

in Bpi ("1). Moreover, we can choose ' (jzj ; �) very steep so that all the point (z; q (z)) for
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z 2 Bp1 ("2) n (0; 0) are noncharacteristic. We de�ne the new domain as 
�;1. Speci�cally,


�;1 = f
�nBp1 ("2)g [ (M \ f(z; t) : t > ~q (z)�R (z; t) for z 2 Bp1 ("2)g) :

Then we continue the same process on p2, and the new domain is 
�;2. Observe that
the process do not create new characteristic points but eliminate all the characteristic point
inside Bpi ("2) except pi. Continuing this process we are able to deform domain 
� into new
one that only consist isolated characteristic points on the boundary with Mc = 0:
To modifyMc into any value we want is easier. One can do the same process by deforming

the graph into parabolic. �

For convenience, we call the domain in above theorem as sweetsop domain.

Remark A.3. The above theorem can be simpli�ed if we can construct strictly convex domain
in M . But the existence to this kind of exhaustion domain isn�t known yet.

We recall theorems from semigroup method. For the de�nition of analytic semigroup,
one can refer to de�nition 12.30 in [R] ([P]). We cited the characterization of in�nitesimal
generator of analytic semigroups. Notation here X is Banach space and A is operator de�ned
on X: Note A can be unbounded operator A : D (A) ! X, where D (A) is a subset in X
such that Ax can be de�ned. As before, we denote �� the Lipschitz classes associated to
nonisotropic distance (refered [J2]) and ��

�
�
;�1;1

�
the restriction to �
 of sections of �1;1

with coe¢ cients in ��
�
�

�
. We denote kk�� the norm of Banach space ��

�
�
;�1;1

�
, and

R� (A) as the inverse operator of A� := A� �I as A� is one-to-one. The resolvent set of the
operator A is the subset of C that R� (A) exists, bounded, and the domain is dense in X.
When we apply, we let X = ��

�
�
;�1;1

�
and A = �H . Here we state general theorems for

following evolution systems
_u = Au+ f

where f 2 X.

Theorem A.5. ([R, Theorem 12.31]) A closed, densely de�ned operator A in X is the
generator of an analytic semigroup if and only if there exists ! a real number such that the
half-plane Re� > ! is contained in the resolvent set of A and, moreover, there is a constant
C such that

(A.2) kR� (A)k �
C

j�� !j
for Re� > ! and k:k is the norm of X.

Theorem A.6. ([R, Theorem 12.33]) Let A be the in�nitesimal generator of an analytic
semigroup and assume that the spectrum of A is entirely to the left of the line Re� = !.
Then there exists a constant M such that

eAt

 �Me!t;

where k:k is the norm of X.
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One can refer to section 7.1 in [P] or page 421 in [E] for the application of semigroup
theory for A is a strong elliptic operator. In our case, the missing boundary regularity is
replaced by theorem A.3 (refer to [GV], [GV2]). Then one can follow Stewart [SH] and
consider Hölder spaces as interpolation space [LA] to obtain the resolvent estimates A.2. As
a result, the regularity of the parabolic systems follows by theorem A.6.
In conclusion, we are able to choose exhaustion domain with �0 large enough, then follow

theorem above, we can choose � large enough to make sure the function space X is contained
in C2;�. This is possible by relation C� � �� � C�=2 as in 20.5, 20.6 of [FS]. This completes
the proof of Proposition 6.1.
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