請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52366
標題: | 古典力學的數學方法之探討 On Mathematical Methods of Classical Mechanics |
作者: | Yi-Hsuan Cheng 鄭亦玄 |
指導教授: | 林楨芸(Chen-Yun Lin) |
關鍵字: | 拉格朗日力學,漢米爾頓力學,伽利略的相對論原理,中心力場,拉格朗日方程,牛頓位勢力學系統,勒壤得變換, Lagrangian mechanics,Hamiltonian mechanics,central force field,Newtonian potential mechanical system,Legendre transformation, |
出版年 : | 2015 |
學位: | 碩士 |
摘要: | 本篇論文是我對古典力學的數學方法所做的探討。古典力學由牛頓力學、拉格朗日力學 (Lagrangian mechanics)、漢米爾頓力學 (Hamiltonian mechanics) 所構成。牛頓力學主要受伽利略的相對論原理啟發,因此我從這個原理的數學建構起頭,接著,我推出一個質點在三維中心力場中的運動必維持在某個平面中。在探討拉格朗日力學時,藉由解拉格朗日方程,我求出平面上距離固定之兩質點的運動。透過變分學,我說明拉格朗日力學系統推廣了牛頓位勢力學系統。而藉著勒壤得變換(Legendre transformation),我推出拉格朗日力學系統其實是漢米爾頓力學系統的特例。 In this thesis, I give a survey of mathematical methods of classical mechanics. Classical mechanics consists of Newtonian, Lagrangian, and Hamiltonian mechanics. Newtonian mechanics is enlightened by Galileo’s principle of relativity, so I give mathematical construction of this principle in the beginning. By methods in Newtonian mechanics, I have shown that every three-dimensional motion in a central force field remains in some plane. By Lagrange’s equations in Lagrangian mechanics, I have solved the motion of two point masses with fixed distance. Through a variational principle, I have shown how a Lagrangian mechanical system generalizes a Newtonian potential mechanical system. Then by Legendre transformation, I have shown how a Lagrangian mechanical system is a particular Hamiltonian mechanical system. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52366 |
全文授權: | 有償授權 |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。