Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52366
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林楨芸(Chen-Yun Lin)
dc.contributor.authorYi-Hsuan Chengen
dc.contributor.author鄭亦玄zh_TW
dc.date.accessioned2021-06-15T16:12:55Z-
dc.date.available2017-08-20
dc.date.copyright2015-08-20
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Second Edition, Springer-Verlag, New
York, 1989
[2] Manfredo Perdigão do Carmo, Riemannian Geometry, Translated by Francis Flaherty, Birkhäuser
Boston Inc., Boston, 1992
[3] Darryl D. Holm, Tanya Schmah, Cristina Stoica, David C. P. Ellis, Geometric Mechanics and Symmetry:
From Finite to Infinite Dimensions, Oxford University Press Inc., New York, 2009
[4] Stephen T. Thornton, Jerry B. Marion, Classical Dynamics of Particles and Systems, Fifth Edition,
Brooks/Cole—Thomson Learning, USA, 2004
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52366-
dc.description.abstract本篇論文是我對古典力學的數學方法所做的探討。古典力學由牛頓力學、拉格朗日力學 (Lagrangian mechanics)、漢米爾頓力學 (Hamiltonian mechanics) 所構成。牛頓力學主要受伽利略的相對論原理啟發,因此我從這個原理的數學建構起頭,接著,我推出一個質點在三維中心力場中的運動必維持在某個平面中。在探討拉格朗日力學時,藉由解拉格朗日方程,我求出平面上距離固定之兩質點的運動。透過變分學,我說明拉格朗日力學系統推廣了牛頓位勢力學系統。而藉著勒壤得變換(Legendre transformation),我推出拉格朗日力學系統其實是漢米爾頓力學系統的特例。zh_TW
dc.description.abstractIn this thesis, I give a survey of mathematical methods of classical mechanics. Classical
mechanics consists of Newtonian, Lagrangian, and Hamiltonian mechanics. Newtonian
mechanics is enlightened by Galileo’s principle of relativity, so I give mathematical construction
of this principle in the beginning. By methods in Newtonian mechanics, I have
shown that every three-dimensional motion in a central force field remains in some plane.
By Lagrange’s equations in Lagrangian mechanics, I have solved the motion of two point
masses with fixed distance. Through a variational principle, I have shown how a Lagrangian
mechanical system generalizes a Newtonian potential mechanical system. Then
by Legendre transformation, I have shown how a Lagrangian mechanical system is a particular
Hamiltonian mechanical system.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:12:55Z (GMT). No. of bitstreams: 1
ntu-104-R00221023-1.pdf: 2093974 bytes, checksum: 0584c019a8367e4de1d281198633af97 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES v
1. INTRODUCTION 1
2. NEWTONIAN MECHANICS 2
2.1. Experimental facts 2
2.2. Systems with one degree of freedom 18
2.3. Systems with two degrees of freedom 21
2.4. Systems in three-space 27
3. LAGRANGIAN MECHANICS 37
3.1. Variational principles 37
3.2. Lagrangian mechanics on manifolds 44
4. HAMILTONIAN MECHANICS 52
4.1. Symplectic structures on manifolds 52
4.2. Legendre transformations 58
REFERENCES 74
dc.language.isoen
dc.title古典力學的數學方法之探討zh_TW
dc.titleOn Mathematical Methods of Classical Mechanicsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李瑩英,王藹農
dc.subject.keyword拉格朗日力學,漢米爾頓力學,伽利略的相對論原理,中心力場,拉格朗日方程,牛頓位勢力學系統,勒壤得變換,zh_TW
dc.subject.keywordLagrangian mechanics,Hamiltonian mechanics,central force field,Newtonian potential mechanical system,Legendre transformation,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved