請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52366
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林楨芸(Chen-Yun Lin) | |
dc.contributor.author | Yi-Hsuan Cheng | en |
dc.contributor.author | 鄭亦玄 | zh_TW |
dc.date.accessioned | 2021-06-15T16:12:55Z | - |
dc.date.available | 2017-08-20 | |
dc.date.copyright | 2015-08-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | [1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Second Edition, Springer-Verlag, New
York, 1989 [2] Manfredo Perdigão do Carmo, Riemannian Geometry, Translated by Francis Flaherty, Birkhäuser Boston Inc., Boston, 1992 [3] Darryl D. Holm, Tanya Schmah, Cristina Stoica, David C. P. Ellis, Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, Oxford University Press Inc., New York, 2009 [4] Stephen T. Thornton, Jerry B. Marion, Classical Dynamics of Particles and Systems, Fifth Edition, Brooks/Cole—Thomson Learning, USA, 2004 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52366 | - |
dc.description.abstract | 本篇論文是我對古典力學的數學方法所做的探討。古典力學由牛頓力學、拉格朗日力學 (Lagrangian mechanics)、漢米爾頓力學 (Hamiltonian mechanics) 所構成。牛頓力學主要受伽利略的相對論原理啟發,因此我從這個原理的數學建構起頭,接著,我推出一個質點在三維中心力場中的運動必維持在某個平面中。在探討拉格朗日力學時,藉由解拉格朗日方程,我求出平面上距離固定之兩質點的運動。透過變分學,我說明拉格朗日力學系統推廣了牛頓位勢力學系統。而藉著勒壤得變換(Legendre transformation),我推出拉格朗日力學系統其實是漢米爾頓力學系統的特例。 | zh_TW |
dc.description.abstract | In this thesis, I give a survey of mathematical methods of classical mechanics. Classical
mechanics consists of Newtonian, Lagrangian, and Hamiltonian mechanics. Newtonian mechanics is enlightened by Galileo’s principle of relativity, so I give mathematical construction of this principle in the beginning. By methods in Newtonian mechanics, I have shown that every three-dimensional motion in a central force field remains in some plane. By Lagrange’s equations in Lagrangian mechanics, I have solved the motion of two point masses with fixed distance. Through a variational principle, I have shown how a Lagrangian mechanical system generalizes a Newtonian potential mechanical system. Then by Legendre transformation, I have shown how a Lagrangian mechanical system is a particular Hamiltonian mechanical system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:12:55Z (GMT). No. of bitstreams: 1 ntu-104-R00221023-1.pdf: 2093974 bytes, checksum: 0584c019a8367e4de1d281198633af97 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員審定書i
中文摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES v 1. INTRODUCTION 1 2. NEWTONIAN MECHANICS 2 2.1. Experimental facts 2 2.2. Systems with one degree of freedom 18 2.3. Systems with two degrees of freedom 21 2.4. Systems in three-space 27 3. LAGRANGIAN MECHANICS 37 3.1. Variational principles 37 3.2. Lagrangian mechanics on manifolds 44 4. HAMILTONIAN MECHANICS 52 4.1. Symplectic structures on manifolds 52 4.2. Legendre transformations 58 REFERENCES 74 | |
dc.language.iso | en | |
dc.title | 古典力學的數學方法之探討 | zh_TW |
dc.title | On Mathematical Methods of Classical Mechanics | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李瑩英,王藹農 | |
dc.subject.keyword | 拉格朗日力學,漢米爾頓力學,伽利略的相對論原理,中心力場,拉格朗日方程,牛頓位勢力學系統,勒壤得變換, | zh_TW |
dc.subject.keyword | Lagrangian mechanics,Hamiltonian mechanics,central force field,Newtonian potential mechanical system,Legendre transformation, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。