Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52252
Title: 班克明-愛茉莉擬赫米遜里奇曲率下完備擬赫米遜流型上L-擬調和函數的梯度估計及劉維爾性質
Gradient Estimate and Liouville Property of L-pseudoharmonic Functions on a Complete Pseudohermitian Manifold with Bakry-Emery Pseudohermitian Ricci Curvature
Authors: Li-Chung Yu
游禮中
Advisor: 張樹城(Shu-Cheng Chang)
Keyword: 加權流型、柯西黎曼流型,Bakry-Emery 里奇曲率,L同調函數,梯度估計,
weighted manifold,CR manifold,Bakry-Emery Ricci curvature,L-harmonicfunction,gradient estimate,
Publication Year : 2015
Degree: 碩士
Abstract: 這篇論文主要是模仿丘成桐教授在1975年對黎曼流型上的L同調函數作梯度估計的方法,進一步的引用在加權柯西黎曼流型上面。由於考慮的為加權流型,因此考慮的曲率將從柯西黎曼里奇曲率,調整成考慮Bakry-Emery 里奇曲率。經由論文內的計算我們可得知,當這個曲率具有下界時,L同調正函數的梯度將會有上界。更進一步來說,若此曲率的下界為零時,則此函數將會是常數函數。換句話說,當此曲率下界為零,我們將會得到加權柯西黎曼流型上的劉維爾定理。
In this paper, we modify Yau's method to discuss a gradient estimate of a nonnegative L-pseudoharmonic function on a oriented, complete, pseudohermitian manifold which satisfies Witten-sub-Laplacian comparison property. Since the manifold we considered in this paper is weighted manifold, the curvature we consider is not only Ricci curvature but Bakry-Emery Ricci curvature Ric_m,n (L). At the end of this paper, we can get that when the form 2Ric_m,n (L) - Tor(L) is bounded below, any gradient estimate of a nonnegative L-pseudoharmonic function is bounded. Moreover, we can then deduce Liouville property on such manifold with curvature satisfies 2Ric_m,n (L) > Tor(L).
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52252
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
1.4 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved