Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52252
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張樹城(Shu-Cheng Chang)
dc.contributor.authorLi-Chung Yuen
dc.contributor.author游禮中zh_TW
dc.date.accessioned2021-06-15T16:10:20Z-
dc.date.available2015-08-25
dc.date.copyright2015-08-25
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation[1] A. Agrachev and W.-Y. Lee, Bishop and Laplacian Comparison Theorems on Three Dimensional Contact Sub-Riemannian Manifolds with Symmetry, to appear in JGEA.
[2] D. Bakry and M. Emery, Diffusion hypercontractives, Sèm. Prob. XIX, Lect. Notes in Maths. 1123 (1985) 177-206.
[3] S.-C. Chang and H.-L. Chiu, Nonnegativity of CR Paneitz operator and its Application to the CR Obata's Theorem in a Pseudohermitian (2n+1)-Manifold, JGA, vol 19 (2009), 261-287.
[4] S.-C. Chang, T.-J. Kuo, and S.-H. Lai, Li-Yau Gradient Estimate and Entropy Formulae for the heat equation in a Closed Pseudohermitian 3-manifold, J. Differential Geom. 89 (2011), 185-216.
[5] S.-C. Chang, Jingzhu Tie and C.-T. Wu, Subgradient Estimate and Liouville-type Theorems for the CR Heat Equation on Heisenberg groups Hn, Asian J. Math., Vol. 14, No. 1 (2010), 041-072
[6] H.-D. Cao and S.-T. Yau, Gradient Estimates, Harnack Inequalities and Estimates for Heat Kernels of the Sum of Squares of Vector Fields, Math. Z. 211 (1992), 485-504.
[7] C Fefferman and K. Hirachi, Ambient Metric Construction of Q-Curvature in Conformal and CR Geometries, Math. Res. Lett., 10, No. 5-6 (2003), 819-831.
[8] C. R. Graham and J. M. Lee, Smooth Solutions of Degenerate Laplacians on Strictly Pseudoconvex Domains, Duke Math. J., 57 (1988), 697-720.
[9] R.-S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom. 17 (1982), 255-306.
[10] K. Hirachi, Scalar Pseudo-hermitian Invariants and the SzegöKernel on 3-dimensional CR Manifold, Lecture Notes in Pure and Appl. Math. 143, pp. 67-76 Dekker, 1992.
[11] J. M. Lee, Pseudo-Einstein Structure on CR Manifolds, Amer. J. Math. 110 (1988), 157-178.
[12] J. M. Lee, The Fefferman Metric and Pseudohermitian Invariants, Trans. A.M.S. 296 (1986), 411-429.
[13] P. Li, Lecture on Harmonic Functions, UCI, 2014.
[14] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 (2005), 1295-1361.
[15] X.-D. Li, Perelman's Entropy Formula for the Witten Laplacian on Riemannian Manifolds via Bakry-Emery Ricci Curvature, preprint.
[16] P. Li and S.-T. Yau, On the Parabolic Kernel of the Schrödinger Operator, Acta Math.156 (1985), 153-201.
[17] Q. H. Ruan, Bakry-Emery Curvature Operator and Ricci Flow, Potential Analysis, 25 (2006), No. 4, 399-406.
[18] R. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986) 221-263.
[19] R. Schoen and S.-T. Yau, Lectures on Differentail Geometry, International Press, 1994.
[20] N. Tanaka, A Differential Geometric Study on Strongly Pseudoconvex Manifolds, Lectures in Mathematics, Kyoto University, Kinokuniya Book Store 9.
[21] S. M. Webster, Pseudo-Hermitian Structures on a Real Hypersurface, J. Differential Geom. 13 No.1 (1978) 25-41.
[22] L.-M. Wu, Uniqueness of Nelson's Diffusions, Probab. Theory and Related Fields, 114 (1999), 549-585.
[23] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52252-
dc.description.abstract這篇論文主要是模仿丘成桐教授在1975年對黎曼流型上的L同調函數作梯度估計的方法,進一步的引用在加權柯西黎曼流型上面。由於考慮的為加權流型,因此考慮的曲率將從柯西黎曼里奇曲率,調整成考慮Bakry-Emery 里奇曲率。經由論文內的計算我們可得知,當這個曲率具有下界時,L同調正函數的梯度將會有上界。更進一步來說,若此曲率的下界為零時,則此函數將會是常數函數。換句話說,當此曲率下界為零,我們將會得到加權柯西黎曼流型上的劉維爾定理。zh_TW
dc.description.abstractIn this paper, we modify Yau's method to discuss a gradient estimate of a nonnegative L-pseudoharmonic function on a oriented, complete, pseudohermitian manifold which satisfies Witten-sub-Laplacian comparison property. Since the manifold we considered in this paper is weighted manifold, the curvature we consider is not only Ricci curvature but Bakry-Emery Ricci curvature Ric_m,n (L). At the end of this paper, we can get that when the form 2Ric_m,n (L) - Tor(L) is bounded below, any gradient estimate of a nonnegative L-pseudoharmonic function is bounded. Moreover, we can then deduce Liouville property on such manifold with curvature satisfies 2Ric_m,n (L) > Tor(L).en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:10:20Z (GMT). No. of bitstreams: 1
ntu-104-R02221025-1.pdf: 1436239 bytes, checksum: 934b63c1a901a78d7e9d36432535f758 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
Chapter 2 Preliminary 3
Chapter 3 CR Analogue of Yau's Gradient Estimate 7
REFERENCE 22
dc.language.isoen
dc.subject梯度估計zh_TW
dc.subject加權流型、柯西黎曼流型zh_TW
dc.subjectBakry-Emery 里奇曲率zh_TW
dc.subjectL同調函數zh_TW
dc.subjectgradient estimateen
dc.subjectweighted manifolden
dc.subjectCR manifolden
dc.subjectBakry-Emery Ricci curvatureen
dc.subjectL-harmonicfunctionen
dc.title班克明-愛茉莉擬赫米遜里奇曲率下完備擬赫米遜流型上L-擬調和函數的梯度估計及劉維爾性質zh_TW
dc.titleGradient Estimate and Liouville Property of L-pseudoharmonic Functions on a Complete Pseudohermitian Manifold with Bakry-Emery Pseudohermitian Ricci Curvatureen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王藹農(Ai-Nung Wang),陳瑞堂(Jui-Tang Chen)
dc.subject.keyword加權流型、柯西黎曼流型,Bakry-Emery 里奇曲率,L同調函數,梯度估計,zh_TW
dc.subject.keywordweighted manifold,CR manifold,Bakry-Emery Ricci curvature,L-harmonicfunction,gradient estimate,en
dc.relation.page23
dc.rights.note有償授權
dc.date.accepted2015-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved