請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52252| 標題: | 班克明-愛茉莉擬赫米遜里奇曲率下完備擬赫米遜流型上L-擬調和函數的梯度估計及劉維爾性質 Gradient Estimate and Liouville Property of L-pseudoharmonic Functions on a Complete Pseudohermitian Manifold with Bakry-Emery Pseudohermitian Ricci Curvature |
| 作者: | Li-Chung Yu 游禮中 |
| 指導教授: | 張樹城(Shu-Cheng Chang) |
| 關鍵字: | 加權流型、柯西黎曼流型,Bakry-Emery 里奇曲率,L同調函數,梯度估計, weighted manifold,CR manifold,Bakry-Emery Ricci curvature,L-harmonicfunction,gradient estimate, |
| 出版年 : | 2015 |
| 學位: | 碩士 |
| 摘要: | 這篇論文主要是模仿丘成桐教授在1975年對黎曼流型上的L同調函數作梯度估計的方法,進一步的引用在加權柯西黎曼流型上面。由於考慮的為加權流型,因此考慮的曲率將從柯西黎曼里奇曲率,調整成考慮Bakry-Emery 里奇曲率。經由論文內的計算我們可得知,當這個曲率具有下界時,L同調正函數的梯度將會有上界。更進一步來說,若此曲率的下界為零時,則此函數將會是常數函數。換句話說,當此曲率下界為零,我們將會得到加權柯西黎曼流型上的劉維爾定理。 In this paper, we modify Yau's method to discuss a gradient estimate of a nonnegative L-pseudoharmonic function on a oriented, complete, pseudohermitian manifold which satisfies Witten-sub-Laplacian comparison property. Since the manifold we considered in this paper is weighted manifold, the curvature we consider is not only Ricci curvature but Bakry-Emery Ricci curvature Ric_m,n (L). At the end of this paper, we can get that when the form 2Ric_m,n (L) - Tor(L) is bounded below, any gradient estimate of a nonnegative L-pseudoharmonic function is bounded. Moreover, we can then deduce Liouville property on such manifold with curvature satisfies 2Ric_m,n (L) > Tor(L). |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52252 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 數學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
