Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51471
Title: 利用卷積神經網路自動化非侵入式基底細胞癌偵測
Automated Non-Invasive Basal-Cell Carcinoma Detection by Convolutional Neural Network
Authors: Hsin-Fu Huang
黃信輔
Advisor: 徐宏民
Keyword: 基底細胞癌,卷積神經網路,
Basal Cell Carcinoma,Convolutional Neural Networks,
Publication Year : 2015
Degree: 碩士
Abstract: 基底細胞癌是一種最常見的皮膚癌,而傳統上,它必須透過侵入式且耗時的組織學檢測,因此活體內顯影的技術,比如說HGM,被用來當做非侵入式的診斷基礎,但HGM會產生大量的影像導致檢測人員需要花大量的時間去檢測。在這篇論文中,我們最主要集中在如果使用客製化且有效率的CNN模型來去自動偵測BCC的特徵,我們最好的模型可以達到比AlexNet更好的結果,而且只需要AlexNet不到1\%的參數量。而這篇論文的方法也可以套用在其他相似的醫療圖片上。
Diagnosis of basal cell carcinoma (BCC), the most common skin cancer, is made by histologic examination traditionally. Yet the process is invasive and time-consuming. In vivo imaging modalities such as harmonic generation microscopy (HGM) was therefore developed for noninvasive diagnosis of BCC. However the images acquired by HGM are too many for physicians to interpret manually. Thus, in this paper we focus on detecting features of BCC automatically by customizing compact and efficient convolutional neural network (CNN) models on HGM images of BCC. Our best model achieves a better result than AlexNet cite{krizhevsky2012imagenet}, while using less than its 1\% number of parameters. The study indicated the potential solution of using customized CNN to detect the features in similar imaging modalities.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51471
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
1.41 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved