Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐宏民
dc.contributor.authorHsin-Fu Huangen
dc.contributor.author黃信輔zh_TW
dc.date.accessioned2021-06-15T13:35:25Z-
dc.date.available2018-02-16
dc.date.copyright2016-02-16
dc.date.issued2015
dc.date.submitted2016-01-28
dc.identifier.citation[1] M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, and B. J. Tromberg. Distinguishing between benign and malig- nant melanocytic nevi by in vivo multiphoton microscopy. Cancer research, 74(10):2688–2697, 2014.
[2] K. Busam, C. Charles, C. Lohmann, A. Marghoob, M. Goldgeier, and A. Halpern. Detection of intraepidermal malignant melanoma in vivo by confocal scanning laser microscopy. Melanoma research, 12(4):349–355, 2002.
[3] S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun. In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation mi- croscopy. Selected Topics in Quantum Electronics, IEEE Journal of, 16(3):478–492, 2010.
[4] S.-Y.Chen,H.-Y.Wu,andC.-K.Sun.Invivoharmonicgenerationbiopsyofhuman skin. Journal of biomedical optics, 14(6):060505–060505, 2009.
[5] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman, S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi. Automatic detection of invasive duc- tal carcinoma in whole slide images with convolutional neural networks. In SPIE Medical Imaging, pages 904103–904103. International Society for Optics and Pho- tonics, 2014.
[6] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, and F. A. G. Osorio. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In Medical Image Computing and Computer- Assisted Intervention–MICCAI 2013, pages 403–410. Springer, 2013.
[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing sys- tems, pages 1097–1105, 2012.
[8] M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. Journal of Investigative Dermatology, 104(6):946–952, 1995.
[9] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van- houcke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.
[11] M.-R. Tsai, Y.-H. Cheng, J.-S. Chen, Y.-S. Sheen, Y.-H. Liao, and C.-K. Sun. Dif- ferential diagnosis of nonmelanoma pigmented skin lesions based on harmonic gen- eration microscopy. Journal of biomedical optics, 19(3):036001–036001, 2014.
[12] H. Wang, A. Cruz-Roa, A. Basavanhally, H. Gilmore, N. Shih, M. Feldman, J. Tomaszewski, F. Gonzalez, and A. Madabhushi. Mitosis detection in breast can- cer pathology images by combining handcrafted and convolutional neural network features. Journal of Medical Imaging, 1(3):034003–034003, 2014.
[13] W.-H. Weng, M.-R. Tsai, Y.-H. Liao, and C.-K. Sun. Differentiating pigmented skin tumors by the tumor-associated melanocytes based on in vivo third harmonic generation microscopy. In SPIE Photonics West BIOS 2015 Technical Summaries, page 3, 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51471-
dc.description.abstract基底細胞癌是一種最常見的皮膚癌,而傳統上,它必須透過侵入式且耗時的組織學檢測,因此活體內顯影的技術,比如說HGM,被用來當做非侵入式的診斷基礎,但HGM會產生大量的影像導致檢測人員需要花大量的時間去檢測。在這篇論文中,我們最主要集中在如果使用客製化且有效率的CNN模型來去自動偵測BCC的特徵,我們最好的模型可以達到比AlexNet更好的結果,而且只需要AlexNet不到1\%的參數量。而這篇論文的方法也可以套用在其他相似的醫療圖片上。zh_TW
dc.description.abstractDiagnosis of basal cell carcinoma (BCC), the most common skin cancer, is made by histologic examination traditionally. Yet the process is invasive and time-consuming. In vivo imaging modalities such as harmonic generation microscopy (HGM) was therefore developed for noninvasive diagnosis of BCC. However the images acquired by HGM are too many for physicians to interpret manually. Thus, in this paper we focus on detecting features of BCC automatically by customizing compact and efficient convolutional neural network (CNN) models on HGM images of BCC. Our best model achieves a better result than AlexNet cite{krizhevsky2012imagenet}, while using less than its 1\% number of parameters. The study indicated the potential solution of using customized CNN to detect the features in similar imaging modalities.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:35:25Z (GMT). No. of bitstreams: 1
ntu-104-R02922054-1.pdf: 1448249 bytes, checksum: f1f805bd496d5ba87d96ab665d9d6be7 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 ii
Acknowledgements iii
摘要 iv
Abstract v
1 Introduction 1
1.1 Basal-CellCarcinoma............................ 1 1.2 ConvolutionalNeuralNetworks ...................... 2
2 Dataset 3
2.1 Numberoforiginalimages ......................... 3
2.2 Preprocessing................................ 3 2.2.1 slidingwindows .......................... 3
2.2.2 Subsampling for training and validation set . . . . . . . . . . . . 3 2.2.3 Evaluationfortestingset...................... 4 2.3 Datasetafterpreprocessing......................... 4
3 Methodology 5
3.1 Deepersmallkernels ............................ 5
4 Experiment Results 7
5 Conclusion 9
5.1 Why to design our own model? . . . . . . . . . . . . . . . . . . . . . . . 9 5.2 Guidelineofcustomacompactandefficientmodel . . . . . . . . . . . . 9
Bibliography 10
dc.language.isoen
dc.subject卷積神經網路zh_TW
dc.subject基底細胞癌zh_TW
dc.subject卷積神經網路zh_TW
dc.subject基底細胞癌zh_TW
dc.subjectConvolutional Neural Networksen
dc.subjectBasal Cell Carcinomaen
dc.subjectBasal Cell Carcinomaen
dc.subjectConvolutional Neural Networksen
dc.title利用卷積神經網路自動化非侵入式基底細胞癌偵測zh_TW
dc.titleAutomated Non-Invasive Basal-Cell Carcinoma Detection by Convolutional Neural Networken
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文進,孫民,李宏毅
dc.subject.keyword基底細胞癌,卷積神經網路,zh_TW
dc.subject.keywordBasal Cell Carcinoma,Convolutional Neural Networks,en
dc.relation.page11
dc.rights.note有償授權
dc.date.accepted2016-01-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved