Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49503
Title: 奈米結構應用於大面積空間電荷限制電晶體以及矽核光纖耦合
Nano structures applied to large area space-charge-limited transistors and silicon cored fiber coupling
Authors: Yung Tai Sun
孫永泰
Advisor: 王倫
Keyword: 干涉微影,拼接,奈米壓印,空間電荷限制電晶體,矽核光纖,抗反射結構,
interference lithography,stitching,nanoimprint,space-charge-limited transistor,silicon cored fiber,anti-reflection structure,
Publication Year : 2016
Degree: 碩士
Abstract: The market share of organic light emitted diode (OLED) applications in screen fabrication has gradually increased recently. The main reason is because of the properties of self-emitting, low operation voltage, low cost, feasibility at large area fabrication and flexible substrate, which drew attentions of both researchers and industries.
The work in this thesis cooperated with the group leading by Prof. Hsin-Fei Meng and Prof. Hsiao-Wen Zan research team from National Chiao Tung University. In our previous works, we were able to fabricate a high performance space-charge-limited transistor (SCLT) with high on-off ratio, low operation voltage, and low leakage current. Our goal is to apply SCLT into a two-transistor one-capacitor (2T1C) circuit with large area. However, it needs to overcome the problems of large area nanoimprint and patterns design for 2T1C circuit.
We have established an interference lithography system to fabricate large area nanopatterns in both 1-D and 2-D structure. A designed mask was also used to solve the problems of alignment and edge diffraction. Moreover, the property of nanoimprint lithography has an advantage of uniformity due to the replication of mold. The influence of each process to uniformity will be discussed.
The research of anti-reflection structure at silicon cored fiber end face and splicing with commercial silica fiber were also studied due to our own fabrication of SCF. The purpose was to reduce the Fresnel reflection between air and silicon, and to enhance the output power. We think the application can be beneficial to the combination of traditional optical fiber system and integrated optics.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49503
DOI: 10.6342/NTU201602959
Fulltext Rights: 有償授權
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
6.12 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved