Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49503
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫
dc.contributor.authorYung Tai Sunen
dc.contributor.author孫永泰zh_TW
dc.date.accessioned2021-06-15T11:31:50Z-
dc.date.available2018-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citation[1] A. ROSE, 'Space-Charge-Limited Currents in Solids,' PHYSICAL REVIEW, vol. 97, pp. 1538-1544, 1955.
[2] M. A. LAMPERT, 'Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps,' PHYSICAL REVIEW, vol. 103, pp. 1648-1656, 1956.
[3] E. J. L. H. Shirakawa, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, 'Synthesis of Electrically Conducting Organic Polymers :Halogen Derivatives of Polyacetylene, (CH)x,' Journal of the Chemical Society, Chemical Communications, pp. 578-580, 1997.
[4] S. A. V. C. W. Tang 'Organic electroluminescent diodes,' Applied Physics Letters, vol. 51, pp. 913-915, 1987.
[5] H.-F. M. Yu-Chiang Chao, and Sheng-Fu Horng, 'Polymer space-charge-limited transistor,' Applied Physics Letters, vol. 88, p. 223510, 2006.
[6] M.-C. N. Yu-Chiang Chao, Hsiao-Wen Zan , Hsin-Fei Meng, Ming-Che Ku, 'High-mobility polymer space–charge-limited transistor with grid-induced crystallinity,' Organic Electronics, vol. 12, pp. 78-82, 2010.
[7] W. O.-Y. K. Nakayama, M. Uno, I. Osaka , K. Takimiya, J. Takeya, 'Flexible air-stable three-dimensional polymer field-effect transistors with high output current density,' Organic Electronics, vol. 14, pp. 2908-2915, 2013.
[8] A. A.-C. Pier J. A. Sazio, Chris E. Finlayson,John R. Hayes, Thomas J. Scheidemantel, Neil F. Baril, Bryan R. Jackson, Dong-Jin Won, Feng Zhang, Elena R. Margine, Venkatraman Gopalan, Vincent H. Crespi, John V. Badding, 'Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,' SCIENCE, vol. 311, pp. 1583-1586, 2006.
[9] J. B. a. E. Snitzer, 'Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,' APPLIED OPTICS, vol. 34, pp. 6848-6854, 1995.
[10] Y.-B. Huang, 'Fabrication of Schottky Phtodetectors by using Si-cored fibers,' Master, Graduate Institude of Photonics and Optoelectronics, National Taiwan University, 2015.
[11] J. C. CheAnLin, and LonA.Wang, 'High-Q Si Microsphere Resonators Fabricated From Si-Cored Fibers for WGMs Excitation,' PHOTONICS TECHNOLOGY LETTERS, vol. 27, pp. 1355-1358, 2015.
[12] Y. P. H. a. L. A. Wang, 'In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes,' APPLIED PHYSICS LETTERS, vol. 106, p. 191106, 2015.
[13] Y. P. Chen, 'Stitching Submicron Periodic Patterns over a Planar Substrate and a Roller by Utilizing Step-and-Align Interference Lithography,' Master, Graduate Institude of Photonics and Optoelectronics, National Taiwan University, 2011.
[14] X. Fang, 'Fabrication of Nano Metal Meshes by Nanoimprint Lithography for Organic Electronics Device Applications,' Master, Graduate Institude of Photonics and Optoelectronics National Taiwan University, 2015.
[15] P. R. K. Stephen Y. Chou, and Preston J. Renstrom, 'Imprint of sub‐25 nm vias and trenches in polymers,' Applied Physics Letters, vol. 67, pp. 3114-3116, 1995.
[16] P. R. K. Stephen Y. Chou, and Preston J. Renstrom, 'Nanoimprint lithography,' Journal of Vacuum Science & Technology B, vol. 14, pp. 4129-4133, 1996.
[17] S. Y. C. a. P. R. Krauss, 'Imprint Lithography with Sub-10 nm Feature Size and High Throughput,' Microelectronic Engineering, vol. 35, pp. 237-240, 1997.
[18] A. G. Hua Tan, and Stephen Y. Chou, 'Roller nanoimprint lithography,' Journal of Vacuum Science & Technology B, vol. 16, pp. 3926-3928, 2001.
[19] C.-H. C. Yung-Pin Chen, Jer-Haur Chang, Hsin-Chieh Chiu, Guan-Yu Chen, Chieh-Hsiu Chiang, Lien-Sheng Chen, Ching-Tung Tseng, Chih-Hsien Lee, Jia-Yush Yen, and Lon A. Wang, 'Stitching periodic submicron fringes by utilizing step-and-align interference lithography,' Journal of Vacuum Science & Technology B, vol. 27, pp. 2951-2957, 2009.
[20] J.-Y. Y. Lien-Sheng Chen, Yung-Pin Chen, Lon A. Wang, Tien-Tung Chung, Hung-I Lin, Ping-Hung Chen, Shu-Hung Chang, 'Longitudinal stitching of sub-micron periodic fringes on a roller,' Microelectronic Engineering, vol. 88, pp. 3235-3243, 2011.
[21] L. Precision. Capacitive Linear Displacement Sensors : An Overview. Available: http://www.lionprecision.com/capacitive-sensors/index.html#apps
[22] Y. NISHIJIMA, 'Moire Patterns: Their Application to Refractive Index and Refractive Index Gradient Measurements,' Optical Society of America, vol. 54, pp. 1-5, 1964.
[23] J. W. M. a. D. W. P. G. A. Bassett, 'Moiré Patterns on Electron Micrographs, and their Application to the Study of Dislocations in Metals,' in Proceedings of the Royal Society of London. Series A, Mathematical and Physical Science, 1958, pp. 345-368.
[24] K. S. Y. a. M. M. Ratnam, '2-D crack growth measurement using circular grating moire´ fringes and pattern matching,' STRUCTURAL CONTROL AND HEALTH MONITORING, vol. 18, pp. 404-415, 2011.
[25] K. S. Y. H. M. Chan, M. M. Ratnam, 'Crack displacement sensing and measurement in concrete using circular grating moire fringes and pattern matching,' in Ninth International Symposium on Laser Metrology, 2008, p. 715529.
[26] K.-R. W. Yen-Chu Chao, Hsin-Fei Meng, Hsiao-Wen Zan, Yung-Hsuan Hsu, 'Large-area non-close-packed nanosphere deposition by blade coating for vertical space-charge-limited transistor,' Organic Electronics, vol. 13, pp. 3177-3182, 2012.
[27] Y.-Y. L. Yen-Ming Chen, Yu-Chiang Chao, Hsiao-Wen Zan, Hsin-Fei Meng, Sheng-Fu Horng, and Che-Hao Chang, 'Large-Area Nano-patterning and Fabrication of Vertical Transistor Array by Non-close-packed Polystyrene Spheres,' ACS Applied Material and Interface, vol. 7, pp. 18899-18903, 2015.
[28] H.-F. M. Yu-Chiang Chaoa, Sheng-Fu Horngb, Chain-Shu Hsu, 'High-performance solution-processed polymer space-charge-limited transistor,' Organic Electronics, vol. 9, pp. 310-316, 2008.
[29] K. M. Hiroki Tamura, Akio Tanaka, and Makoto Ito, 'Mechanism of Hydroxylation of Metal Oxide Surfaces,' Journal of Colloid and Interface Science, vol. 243, pp. 202-207, 2001.
[30] F.-H. K. Jem-Kun Chen, Kuen-Fong Hsieh, Cheng-Tung Chou, and Feng-Chih Chang, 'Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography,' Journal of Vacuum Science & Technology B, vol. 22, pp. 3233-3241, 2004.
[31] C. G. C. Perret , F. Lazzarino, J. Tallal, S. Landis, R. Pelzer, 'Characterization of 8-in. wafers printed by nanoimprint lithography,' Microelectronic Engineering, vol. 73-74, pp. 172-177, 2004.
[32] F. S. Cheng, S. Y. Yang, and C. C. Chen, 'Novel hydrostatic pressuring mechanism for soft UV-imprinting processes,' Journal of Vacuum Science & Technology B, vol. 26, pp. 132-136, Jan 2008.
[33] V. W. B. D. R. Hines, E. D. Williams, Y. Shao, and S. A. Solin, 'Transfer printing methods for the fabrication of flexible organic electronics,' Journal of Applied Physics, vol. 101, p. 024503, 2007.
[34] H. R. Volker Schmidt, Stephan Senz, Siegfried Karg, Walter Riess, and Ulrich Gosele, 'Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor,' Small, vol. 2, pp. 85-88, 2006.
[35] N. H. Chenxi Lin, and Michelle L. Povinelli, 'Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,' OPTICS EXPRESS, vol. 20, pp. 125-132, 2012.
[36] L. E. B. Catalin M. Florea, Shyam S. Bayya, Brandon Shaw, Ish D. Aggarwal, Jas S.Sanghera, 'Recent advancements in anti-reflective surface structures (ARSS) for near- to mid-infrared optics,' 2013, p. 87080.
[37] J. S. W. A.K. Chu, Z.Y. Tsai , C.K. Lee, 'A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,' Solar Energy Materials & Solar Cells, vol. 93, pp. 1276–1280, 2009.
[38] D. o. E. a. C. Engineering. KOH Etching of Silicon, Silicon Dioxide (SiO2) and Silicon Nitride (SiN). Available: http://www.cleanroom.byu.edu/KOH.phtml
[39] X. L. a. P. W. Bohn, 'Metal-assisted chemical etching in HF/H2O2 produces porous silicon,' APPLIED PHYSICS LETTERS, vol. 77, pp. 2572-2574, 2000.
[40] N. G. Zhipeng Huang, Peter Werner, Johannes de Boor, and Ulrich Gösele, 'Metal-Assisted Chemical Etching of Silicon: A Review,' Advance Material, vol. 23, pp. 285-308, 2011.
[41] Z. H. Hee Han, Woo Lee, 'Metal-assisted chemical etching of silicon and nanotechnology applications,' Nano Today, vol. 9, pp. 271-304, 2014.
[42] M. C. H. S.J. Wilson, 'The Optical Properties of 'Moth Eye' Antireflection Surfaces,' OPTICA ACTA, vol. 29, pp. 993-1009, 1982.
[43] S. J. E. a. R. B. Richard A Soref, 'Silicon waveguided components for the long-wave infrared region,' JOURNAL OF OPTICS A, vol. 8, pp. 840-848, 2006.
[44] Y. C. Z. L. L. Ma, N. Jiang, X. Lu, J. Shao, W. Lu, J. Ge, X. M. Ding, and X. Y. Hou, 'Wide-band “black silicon” based on porous silicon,' Applied Physics Letters, vol. 88, p. 171907, 2006.
[45] D. H. R. a. G. M. Morris, 'Antireflection structured surfaces for the infrared spectral region,' APPLIED OPTICS, vol. 32, pp. 1154-1167, 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49503-
dc.description.abstractThe market share of organic light emitted diode (OLED) applications in screen fabrication has gradually increased recently. The main reason is because of the properties of self-emitting, low operation voltage, low cost, feasibility at large area fabrication and flexible substrate, which drew attentions of both researchers and industries.
The work in this thesis cooperated with the group leading by Prof. Hsin-Fei Meng and Prof. Hsiao-Wen Zan research team from National Chiao Tung University. In our previous works, we were able to fabricate a high performance space-charge-limited transistor (SCLT) with high on-off ratio, low operation voltage, and low leakage current. Our goal is to apply SCLT into a two-transistor one-capacitor (2T1C) circuit with large area. However, it needs to overcome the problems of large area nanoimprint and patterns design for 2T1C circuit.
We have established an interference lithography system to fabricate large area nanopatterns in both 1-D and 2-D structure. A designed mask was also used to solve the problems of alignment and edge diffraction. Moreover, the property of nanoimprint lithography has an advantage of uniformity due to the replication of mold. The influence of each process to uniformity will be discussed.
The research of anti-reflection structure at silicon cored fiber end face and splicing with commercial silica fiber were also studied due to our own fabrication of SCF. The purpose was to reduce the Fresnel reflection between air and silicon, and to enhance the output power. We think the application can be beneficial to the combination of traditional optical fiber system and integrated optics.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:31:50Z (GMT). No. of bitstreams: 1
ntu-105-R02941023-1.pdf: 6267565 bytes, checksum: 4f7c3d4e47ee9d5bf758b0f04853bd4f (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
Statement of Contributions v
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
Chapter 1 Motivation and Introduction 1
1-1 Motivation 1
1-2 Space-charge-limited transistors 3
1-3 Silicon cored fiber 7
1-4 Organization of the thesis 9
Chapter 2 Fabrication of Imprinted SCLT 10
2-1 Interference Lithography (IL) 10
2-1-1 Introduction to IL 10
2-1-3 Exposure dose and contrast 14
2-2 Nanoimprint Lithography 19
2-3 Fabrication processes of imprinted SCLT 21
Chapter 3 Formation of Large Area 10x10 cm2 Patterns by Using Interference Lithography 26
3-1 Single exposure stitching 26
3-1-1 Rectangular unit beam 26
3-1-2 DC zone 28
3-1-3 Patterns stitching 31
3-2 Double exposure stitching 33
3-2-1 Rotation error 33
3-2-2 3-D Position alignment by using Moiré pattern 34
3-2-3 Simulation of patterns stitching 37
3-2-4 Stitching design for 2T1C circuit and pattern observation 41
Chapter 4 Large Area SCLT Arrays Fabrication by Using Nanoimprint Lithography 44
4-1 Fabrication and measurement of SCLTs array by colloidal lithography 44
4-2 Fabrication of SCLTs array by nanoimprint lithography 47
4-2-1 Mold fabrication 47
4-2-2 PDMS replication 49
4-2-3 Large area imprint and strip off process 50
4-3 Measurement results 52
4-4 Discussion 58
Chapter 5 Reducing coupling loss between silicon cored fiber and glass fiber 61
5-1 Fabrication of nano structure on silicon wafer 61
5-1-1 KOH solution etching 61
5-1-2 Metal assisted chemical etching 64
5-1-3Measurement of reflectance 66
5-2 Fabrication of porous SCF end face and transmission measurement 71
5-3 Splicing a SCF and a glass fiber 78
Chapter 6 Conclusions and Future Works 81
6-1 Conclusions 81
6-2 Future works 82
References 85
Publication 91
dc.language.isoen
dc.subject抗反射結構zh_TW
dc.subject干涉微影zh_TW
dc.subject拼接zh_TW
dc.subject奈米壓印zh_TW
dc.subject空間電荷限制電晶體zh_TW
dc.subject矽核光纖zh_TW
dc.subjectinterference lithographyen
dc.subjectanti-reflection structureen
dc.subjectsilicon cored fiberen
dc.subjectspace-charge-limited transistoren
dc.subjectnanoimprinten
dc.subjectstitchingen
dc.title奈米結構應用於大面積空間電荷限制電晶體以及矽核光纖耦合zh_TW
dc.titleNano structures applied to large area space-charge-limited transistors and silicon cored fiber couplingen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee冉曉雯,孟心飛,黃建璋
dc.subject.keyword干涉微影,拼接,奈米壓印,空間電荷限制電晶體,矽核光纖,抗反射結構,zh_TW
dc.subject.keywordinterference lithography,stitching,nanoimprint,space-charge-limited transistor,silicon cored fiber,anti-reflection structure,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201602959
dc.rights.note有償授權
dc.date.accepted2016-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved