Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47366
Title: 吉他效果器效果辨認與延遲估計
Effect Recognition and Delay Estimation for a Guitar Effector
Authors: Li-Wei Hsiao
蕭力維
Advisor: 鄭士康
Keyword: 效果器辨認,延遲參數估計,支援向量機,類神經網路,自相關係數,
effect recognition,delay parameters estimation,support vector machine,neural network,autocorrelation,
Publication Year : 2010
Degree: 碩士
Abstract: 音效效果器被大量運用在電吉他的彈奏上,電吉他的樂手在彈奏他人作品時常希望能模仿原始彈奏者的音色,並且藉由模仿音色的過程學習效果器音色的調整以創造屬於自己的音色。然而每種效果器有不同的音色,且每種效果器也有多個不同的參數需要調整,因此調整音色是個繁瑣並且需要長時間學習的一件事。本論文使用支援向量機(Support Vector Machine)讓電腦在輸入純電吉他的音訊檔後能自動辨認是否加入了破音(Distortion)效果,抑或是只加入了延遲(Delay)效果或沒加入效果器的乾淨音色(Clean Tone)。並針對延遲效果分別透過音色特徵與時域特徵使用類神經網路(Neural Network)以及自相關係數(Autocorrelation)方法自動偵測延遲效果器的參數設定並討論其結果,且發現使用自相關係數方法其三個參數之平均正確率為90.53%,相較於類神經網路有非常顯著的提升,並且有判斷是否加入延遲效果的好處,其偵測率為88.89%。
Audio effects are commonly used in playing electric guitar. When playing others’ piece, guitar players often want to imitate the original guitar tone of the song and further create their own tone to tune process. However, because there are a lot of different effects, and there are many parameters on each effect, this tuning process is very tedious and needs to take much time for learning. In this thesis we let computer automatically recognize whether the input audio files which recorded guitar only have passed distortion effect or delay effect or neither (clean tone) based on SVM (Support Vector Machine). For delay effect, timbral features and time domain features of data for neural network and autocorrelation method can be applied in delay parameters estimation. The average accuracy of three delay parameters with autocorrelation method is 90.53%, and it’s significantly improved as opposed to neural network based method. The autocorrelation method can also detect whether the input data have passed delay effect, and the hit rate is 88.89%.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47366
Fulltext Rights: 有償授權
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
920.72 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved