Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47366
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鄭士康
dc.contributor.authorLi-Wei Hsiaoen
dc.contributor.author蕭力維zh_TW
dc.date.accessioned2021-06-15T05:56:43Z-
dc.date.available2014-08-19
dc.date.copyright2010-08-19
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation[1] N. Maddage, et al., 'A svm-based classification approach to musical audio,' in Proc. ISMIR, 2003.
[2] T. Li, 'Musical genre classification of audio signals,' IEEE Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293-302, 2002.
[3] C. Silla Jr, et al., 'A machine learning approach to automatic music genre classification,' Journal of the Brazilian Computer Society, vol. 14, pp. 7-18, 2008.
[4] P. Annesi, et al., 'Audio feature engineering for automatic music genre classification,' RIAO, Pittsburgh, 2007.
[5] S. Doraisamy, et al., 'A study on feature selection and classification techniques for automatic genre classification of traditional malay music,' in Proc. ISMIR, 2008, pp. 331-336.
[6] T. Li, et al., 'A comparative study on content-based music genre classification,' in SIGIR'03, 2003, pp. 282-289.
[7] E. Pampalk, et al., 'Improvements of audio-based music similarity and genre classification,' in Proc. ISMIR, 2005.
[8] C.-L. Hsu, 'An Image Retrieval System Using Music as Query,' Master Thesis, Graduate Institute of Electrical Engineering of Electrical Engineering and Computer Science, National Taiwan University, Taiwan, 2009.
[9] C. Liu and C. Huang, 'A singer identification technique for content-based classification of MP3 music objects,' in In Proceedings of International Conference on Information and Knowledge Management, 2002, pp. 438-445.
[10] A. Mesaros, et al., 'Singer identification in polyphonic music using vocal separation and pattern recognition methods,' in Proc. ISMIR, 2007, pp. 375-378.
[11] C. Knapp and G. Carter, 'The generalized correlation method for estimation of time delay,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 24, no. 4, pp. 320-327, 1976.
[12] J. Chen, et al., 'Robust time delay estimation exploiting redundancy among multiple microphones,' IEEE Transactions on Speech and Audio Processing, vol. 11, no. 6, pp. 549-557, 2003.
[13] L. Rabiner, 'On the use of autocorrelation analysis for pitch detection,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 25, no. 1, pp. 24-33, 1977.
[14] C. Chang and C. Lin, LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[15] O. Lartillot, et al., MIRtoolbox, 2008. Software available at https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
[16] C. Cortes and V. Vapnik, 'Support-vector networks,' Machine Learning, vol. 20, pp. 273-297, 1995.
[17] V. Vapnik, Statistical learning theory: New York: Wiley, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47366-
dc.description.abstract音效效果器被大量運用在電吉他的彈奏上,電吉他的樂手在彈奏他人作品時常希望能模仿原始彈奏者的音色,並且藉由模仿音色的過程學習效果器音色的調整以創造屬於自己的音色。然而每種效果器有不同的音色,且每種效果器也有多個不同的參數需要調整,因此調整音色是個繁瑣並且需要長時間學習的一件事。本論文使用支援向量機(Support Vector Machine)讓電腦在輸入純電吉他的音訊檔後能自動辨認是否加入了破音(Distortion)效果,抑或是只加入了延遲(Delay)效果或沒加入效果器的乾淨音色(Clean Tone)。並針對延遲效果分別透過音色特徵與時域特徵使用類神經網路(Neural Network)以及自相關係數(Autocorrelation)方法自動偵測延遲效果器的參數設定並討論其結果,且發現使用自相關係數方法其三個參數之平均正確率為90.53%,相較於類神經網路有非常顯著的提升,並且有判斷是否加入延遲效果的好處,其偵測率為88.89%。zh_TW
dc.description.abstractAudio effects are commonly used in playing electric guitar. When playing others’ piece, guitar players often want to imitate the original guitar tone of the song and further create their own tone to tune process. However, because there are a lot of different effects, and there are many parameters on each effect, this tuning process is very tedious and needs to take much time for learning. In this thesis we let computer automatically recognize whether the input audio files which recorded guitar only have passed distortion effect or delay effect or neither (clean tone) based on SVM (Support Vector Machine). For delay effect, timbral features and time domain features of data for neural network and autocorrelation method can be applied in delay parameters estimation. The average accuracy of three delay parameters with autocorrelation method is 90.53%, and it’s significantly improved as opposed to neural network based method. The autocorrelation method can also detect whether the input data have passed delay effect, and the hit rate is 88.89%.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:56:43Z (GMT). No. of bitstreams: 1
ntu-99-R97921066-1.pdf: 942816 bytes, checksum: 0ab45c46b5b9533c3af7528a7db54921 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Key Contributions 2
1.3 Literature Survey and Related Works 3
1.4 Chapter Outline 5
Chapter 2 Background 6
2.1 Electric Guitar Effects 6
2.1.1 Introduction to Electronic Guitar Effects 6
2.1.2 Distortion Effect 9
2.1.3 Delay Effect 12
2.2 Timbral Features 13
2.3 Support Vector Machine 17
2.4 Neural Networks 21
2.5 Autocorrelation 25
Chapter 3 Effect Recognition and Delay Estimation 28
3.1 System Architecture 28
3.2 Effect Recognition 33
3.3 Delay Estimation 36
3.3.1 Neural Network for Parameter Estimation with Timbral Features 37
3.3.2 Neural Network for Parameter Estimation with Time Domain Features 38
3.3.3 Autocorrelation for Delay Time and Feedback Detection 41
3.3.4 Delay Level Detection 46
Chapter 4 Results and Discussions 50
4.1 Experiment with Effect Recognition 50
4.2 Experiment with the Neural Network for Delay Estimation with Timbral Features 54
4.3 Experiment with the Neural Network for Parameters Estimation with Time Domain Features 57
4.4 Experiment with Autocorrelation for Delay Time and Feedback Detection 60
4.5 Experiment with Delay Level Estimation 66
Chapter 5 Conclusions 69
Reference 70
Appendix Corpus 72
dc.language.isoen
dc.subject自相關係數zh_TW
dc.subject效果器辨認zh_TW
dc.subject延遲參數估計zh_TW
dc.subject支援向量機zh_TW
dc.subject類神經網路zh_TW
dc.subjecteffect recognitionen
dc.subjectautocorrelationen
dc.subjectneural networken
dc.subjectsupport vector machineen
dc.subjectdelay parameters estimationen
dc.title吉他效果器效果辨認與延遲估計zh_TW
dc.titleEffect Recognition and Delay Estimation for a Guitar Effectoren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智星,蘇文鈺,古鴻炎
dc.subject.keyword效果器辨認,延遲參數估計,支援向量機,類神經網路,自相關係數,zh_TW
dc.subject.keywordeffect recognition,delay parameters estimation,support vector machine,neural network,autocorrelation,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
920.72 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved