Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47366Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 鄭士康 | |
| dc.contributor.author | Li-Wei Hsiao | en |
| dc.contributor.author | 蕭力維 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:56:43Z | - |
| dc.date.available | 2014-08-19 | |
| dc.date.copyright | 2010-08-19 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | [1] N. Maddage, et al., 'A svm-based classification approach to musical audio,' in Proc. ISMIR, 2003.
[2] T. Li, 'Musical genre classification of audio signals,' IEEE Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293-302, 2002. [3] C. Silla Jr, et al., 'A machine learning approach to automatic music genre classification,' Journal of the Brazilian Computer Society, vol. 14, pp. 7-18, 2008. [4] P. Annesi, et al., 'Audio feature engineering for automatic music genre classification,' RIAO, Pittsburgh, 2007. [5] S. Doraisamy, et al., 'A study on feature selection and classification techniques for automatic genre classification of traditional malay music,' in Proc. ISMIR, 2008, pp. 331-336. [6] T. Li, et al., 'A comparative study on content-based music genre classification,' in SIGIR'03, 2003, pp. 282-289. [7] E. Pampalk, et al., 'Improvements of audio-based music similarity and genre classification,' in Proc. ISMIR, 2005. [8] C.-L. Hsu, 'An Image Retrieval System Using Music as Query,' Master Thesis, Graduate Institute of Electrical Engineering of Electrical Engineering and Computer Science, National Taiwan University, Taiwan, 2009. [9] C. Liu and C. Huang, 'A singer identification technique for content-based classification of MP3 music objects,' in In Proceedings of International Conference on Information and Knowledge Management, 2002, pp. 438-445. [10] A. Mesaros, et al., 'Singer identification in polyphonic music using vocal separation and pattern recognition methods,' in Proc. ISMIR, 2007, pp. 375-378. [11] C. Knapp and G. Carter, 'The generalized correlation method for estimation of time delay,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 24, no. 4, pp. 320-327, 1976. [12] J. Chen, et al., 'Robust time delay estimation exploiting redundancy among multiple microphones,' IEEE Transactions on Speech and Audio Processing, vol. 11, no. 6, pp. 549-557, 2003. [13] L. Rabiner, 'On the use of autocorrelation analysis for pitch detection,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 25, no. 1, pp. 24-33, 1977. [14] C. Chang and C. Lin, LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm [15] O. Lartillot, et al., MIRtoolbox, 2008. Software available at https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox [16] C. Cortes and V. Vapnik, 'Support-vector networks,' Machine Learning, vol. 20, pp. 273-297, 1995. [17] V. Vapnik, Statistical learning theory: New York: Wiley, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47366 | - |
| dc.description.abstract | 音效效果器被大量運用在電吉他的彈奏上,電吉他的樂手在彈奏他人作品時常希望能模仿原始彈奏者的音色,並且藉由模仿音色的過程學習效果器音色的調整以創造屬於自己的音色。然而每種效果器有不同的音色,且每種效果器也有多個不同的參數需要調整,因此調整音色是個繁瑣並且需要長時間學習的一件事。本論文使用支援向量機(Support Vector Machine)讓電腦在輸入純電吉他的音訊檔後能自動辨認是否加入了破音(Distortion)效果,抑或是只加入了延遲(Delay)效果或沒加入效果器的乾淨音色(Clean Tone)。並針對延遲效果分別透過音色特徵與時域特徵使用類神經網路(Neural Network)以及自相關係數(Autocorrelation)方法自動偵測延遲效果器的參數設定並討論其結果,且發現使用自相關係數方法其三個參數之平均正確率為90.53%,相較於類神經網路有非常顯著的提升,並且有判斷是否加入延遲效果的好處,其偵測率為88.89%。 | zh_TW |
| dc.description.abstract | Audio effects are commonly used in playing electric guitar. When playing others’ piece, guitar players often want to imitate the original guitar tone of the song and further create their own tone to tune process. However, because there are a lot of different effects, and there are many parameters on each effect, this tuning process is very tedious and needs to take much time for learning. In this thesis we let computer automatically recognize whether the input audio files which recorded guitar only have passed distortion effect or delay effect or neither (clean tone) based on SVM (Support Vector Machine). For delay effect, timbral features and time domain features of data for neural network and autocorrelation method can be applied in delay parameters estimation. The average accuracy of three delay parameters with autocorrelation method is 90.53%, and it’s significantly improved as opposed to neural network based method. The autocorrelation method can also detect whether the input data have passed delay effect, and the hit rate is 88.89%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:56:43Z (GMT). No. of bitstreams: 1 ntu-99-R97921066-1.pdf: 942816 bytes, checksum: 0ab45c46b5b9533c3af7528a7db54921 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Key Contributions 2 1.3 Literature Survey and Related Works 3 1.4 Chapter Outline 5 Chapter 2 Background 6 2.1 Electric Guitar Effects 6 2.1.1 Introduction to Electronic Guitar Effects 6 2.1.2 Distortion Effect 9 2.1.3 Delay Effect 12 2.2 Timbral Features 13 2.3 Support Vector Machine 17 2.4 Neural Networks 21 2.5 Autocorrelation 25 Chapter 3 Effect Recognition and Delay Estimation 28 3.1 System Architecture 28 3.2 Effect Recognition 33 3.3 Delay Estimation 36 3.3.1 Neural Network for Parameter Estimation with Timbral Features 37 3.3.2 Neural Network for Parameter Estimation with Time Domain Features 38 3.3.3 Autocorrelation for Delay Time and Feedback Detection 41 3.3.4 Delay Level Detection 46 Chapter 4 Results and Discussions 50 4.1 Experiment with Effect Recognition 50 4.2 Experiment with the Neural Network for Delay Estimation with Timbral Features 54 4.3 Experiment with the Neural Network for Parameters Estimation with Time Domain Features 57 4.4 Experiment with Autocorrelation for Delay Time and Feedback Detection 60 4.5 Experiment with Delay Level Estimation 66 Chapter 5 Conclusions 69 Reference 70 Appendix Corpus 72 | |
| dc.language.iso | en | |
| dc.subject | 自相關係數 | zh_TW |
| dc.subject | 效果器辨認 | zh_TW |
| dc.subject | 延遲參數估計 | zh_TW |
| dc.subject | 支援向量機 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | effect recognition | en |
| dc.subject | autocorrelation | en |
| dc.subject | neural network | en |
| dc.subject | support vector machine | en |
| dc.subject | delay parameters estimation | en |
| dc.title | 吉他效果器效果辨認與延遲估計 | zh_TW |
| dc.title | Effect Recognition and Delay Estimation for a Guitar Effector | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張智星,蘇文鈺,古鴻炎 | |
| dc.subject.keyword | 效果器辨認,延遲參數估計,支援向量機,類神經網路,自相關係數, | zh_TW |
| dc.subject.keyword | effect recognition,delay parameters estimation,support vector machine,neural network,autocorrelation, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| Appears in Collections: | 電機工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-99-1.pdf Restricted Access | 920.72 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
