Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47304
Title: 大型感測網路資料庫之資料壓縮與查詢
Data Compression and Query for Large Scale Sensor Network Database
Authors: Che-Wei Kuo
郭哲瑋
Advisor: 施吉昇
Keyword: 資料壓縮,感測網路,感測網路應用,
Data compression,sensor network,sensor network applications,
Publication Year : 2010
Degree: 碩士
Abstract: 摘要
多維度時間資料表格是感測網路應用中常見的儲存格式。隨著時間的
推移,資料表格將變得非常龐大而無法管理。為了減少儲存空間,並
達到即時查詢,如何權衡資料壓縮率以及即時查詢效能是一項具挑戰
性的議題。在這篇論文中,我們特別針對大型感測網路資料庫,提出
一個高儲存效率的框架,並且不犧牲查詢效能。資料壓縮採用幾種包
括字典壓縮和熵編碼等壓縮技術。同時,對壓縮後資料能直接進行查
詢而不需解壓縮的動作,以提升查詢效能。實驗針對幾種不同感測網
路應用,包括數位型電表、加洲索諾馬縣紅杉林、以及氣象觀測等資
料庫系統來評估資料壓縮率和查詢效能。實驗結果顯示,資料壓縮後
大小在原始大小 31% 以內,且編碼效率達 75% 以上。同時,在
查詢時增加的開銷在 8% 以內,整體來看,查詢效能甚至優於未壓
縮資料表格。

關鍵字 - 資料壓縮, 感測網路, 感測網路應用
Multi-dimensional temporal data set is the common format in sensor network applications to store sampled temporal data. As time goes on, the size of the core tables in the data set may increase to enormous size and the tables become not manageable. In order to reduce storage space and allow online query, how to trade off data compression effectiveness for on-line query performance is a challenge issue. In this paper, we are concerned with an effective framework for temporal data set that does not scarify online query performance and is specifically designed for very large sensor network database. The sampled data are compressed using several candidate approaches including dictionary-base compress and entropy coding. In the mean time,on-line queries are conducted without decompressing the compressed data set so as to enhance the query performance. Experiments are conducted on a digital power meter, Sonoma redwood, and Sensor KDD databases to evaluate the proposed methodologies in terms of data compression ratio and data query speed. The results show that the compression ratio are at most 31% and the coding efficiency achieves over 75%. In the mean time, the increased overhead for online query is limited up to 8% and overall query performance is even better than the uncompressed data.
Keywords - Data compression, sensor network, sensor network applications.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47304
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
4.03 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved