請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47304完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施吉昇 | |
| dc.contributor.author | Che-Wei Kuo | en |
| dc.contributor.author | 郭哲瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:54:16Z | - |
| dc.date.available | 2020-12-31 | |
| dc.date.copyright | 2010-08-19 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | [1] T. Haenselmann, Sensornetworks. GFDL Wireless Sensor Network textbook, 2006.
[2] K. ROMER and E. Z. FRIEDEMANN MATTERN, “The Design Space of Wireless Sensor Networks,” vol. 11, pp. 54–61, December 2004. [3] C.-Y. CHONG and S. P. KUMAR, “Sensor Networks: Evolution, Opportunities, and Challenges,” vol. 91, pp. 1247–1256, AUGUST 2003. [4] U. C. Bureau, “Demographics of chicago.” at http://en.wikipedia.org/ wiki/Demographics of Chicago. Last accessed at April 2010. [5] “Oracle.” http://www.oracle.com/. [6] “Mysql.” http://www.mysql.com/. [7] “Microsoft sql server.” http://www.microsoft.com/sql. [8] “Postgresql.” http://www.postgresql.org/. [9] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte, “The Implementa- tion and Performance of Compressed Databases,” ACM SIGMOD Record, vol. 29, pp. 55–67, 2000. [10] J. Li, D. Rotem, and H. K. T. Wong, “A New Compression Method with Fast Searching on Large Databases,” in Proceedings of the 13th International Conference on Very Large Data Bases, pp. 311–318, 1987. [11] V. Raman and G. Swart, “How to wring a table dry: entropy compression of rela- tions and querying of compressed relations,” in VLDB ’06: Proceedings of the 32nd international conference on Very large data bases, pp. 858–869, VLDB Endowment, 2006. [12] D. J. Abadi, S. R. Madden, and M. C. Ferreira, “Integrating Compression and Ex- ecution in Column-Oriented Database Systems,” in Proceedings of the ACM SIG- MOD International Conference on Management of Data, pp. 671–682, 2006. [13] W. K. NG and C. V. RAVISHANKAR, “Relational Database Compression Using Augmented Vector Quantization,” in Proceedings of the Eleventh International Con- ference on Data Engineering, pp. 540–549, 1995. [14] Z. Chen, J. Gehrke, and F. Korn, “Query Optimization in Compressed Database Systems,” in Proceedings of the ACM SIGMOD International Conference on Manage- ment of Data, pp. 271–282, 2001. [15] R. Govindan, J. M. Hellerstein, W. Hong, S. Madden, M. Franklin, and S. Shenker, “The Sensor Network as a Database,” tech. rep., Technical Report 02-771, Com- puter Science Department, University of Southern California, 2002 September. [16] S. Madden, W. Hong, J. Hellerstein, and K. Stanek, “Tinydb.” http://telegraph.cs.berkeley.edu/tinydb/. [17] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: An Ac- quisitional Query Processing System for Sensor Networks,” vol. 30, pp. 122–173, March 2005. [18] S. Lin, V. Kalogeraki, D. Gunopulos, and S. Lonardi, “Efficient Information Com- pression in Sensor Networks,” International Journal of Sensor Networks, vol. 1, no. 3/4, pp. 229–240, 2006. [19] Z. Xiong, A. D. Liveris, , and S. Cheng, “Distributed Source Coding for Sensor Networks,” IEEE Signal Processing Magazine, vol. 21, pp. 80–94, September 2004. [20] A. T. Hoang and M. Motani, “Collaborative Broadcasting and Compression in Cluster-Based Wireless Sensor Networks,” ACM Transactions on Sensor Networks, vol. 3, pp. 17/1–17/34, August 2007. [21] L. Vasudevan, A. Ortega, and U. Mitra, “Application-Specific Compression for Time Delay Estimation in Sensor Networks,” in Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 243–254, 2003. [22] N. Kimura and S. Latifi, “A Survey on Data Compression in Wireless Sensor Net- works,” in Proceedings of the International Conference on Information Technology: Cod- ing and Computing (ITCC05), vol. 2, p. 813, April 2005. [23] Y.-C. Wang, Y.-Y. Hsieh, , and Y.-C. Tseng, “Compression and Storage Schemes in a Sensor Network with Spatial and Temporal Coding Techniques,” in Proceedings of IEEE Vehicular Technology Conference, pp. 148–152, 2008. [24] M. A. Roth and S. J. V. Horn, “Database Compression,” ACM SIGMOD Record, vol. 22, pp. 31–39, 1993. [25] “Adabas.” http://www.softwareag.com/corporate/products/ adabas/. [26] M. Poess and D. Potapov, “Data compression in oracle,” in VLDB ’2003: Proceed- ings of the 29th international conference on Very large data bases, pp. 937–947, VLDB Endowment, 2003. [27] G. Graefe and L. D. Shapiro, “Data Compression and Database Performance,” ACM/IEEE-CS Symp. On Applied Computing, 1991. [28] T. M. Cover and J. A. Thomas, Elements of information theory. New York, NY, USA: Wiley-Interscience, 1991. [29] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings of the Institute of Radio Engineers, vol. 40, pp. 1098–1101, September 1952. [30] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Daw- son, P. Buonadonna, D. Gay, and W. Hong, “A macroscope in the redwoods,” in SenSys ’05: Proceedings of the 3rd international conference on Embedded networked sensor systems, (New York, NY, USA), pp. 51–63, ACM, 2005. [31] “Taiwan power company.” http://www.taipower.com.tw/indexE.htm. [32] “SensorKDD-2009 Challenge.” at http://www.ornl.gov/sci/ knowledgediscovery/SensorKDD-2009/challenge.htm. [33] “Sqlite.” at http://www.sqlite.org/. [34] “Mysql documentation.” at http://dev.mysql.com/doc/. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47304 | - |
| dc.description.abstract | 摘要
多維度時間資料表格是感測網路應用中常見的儲存格式。隨著時間的 推移,資料表格將變得非常龐大而無法管理。為了減少儲存空間,並 達到即時查詢,如何權衡資料壓縮率以及即時查詢效能是一項具挑戰 性的議題。在這篇論文中,我們特別針對大型感測網路資料庫,提出 一個高儲存效率的框架,並且不犧牲查詢效能。資料壓縮採用幾種包 括字典壓縮和熵編碼等壓縮技術。同時,對壓縮後資料能直接進行查 詢而不需解壓縮的動作,以提升查詢效能。實驗針對幾種不同感測網 路應用,包括數位型電表、加洲索諾馬縣紅杉林、以及氣象觀測等資 料庫系統來評估資料壓縮率和查詢效能。實驗結果顯示,資料壓縮後 大小在原始大小 31% 以內,且編碼效率達 75% 以上。同時,在 查詢時增加的開銷在 8% 以內,整體來看,查詢效能甚至優於未壓 縮資料表格。 關鍵字 - 資料壓縮, 感測網路, 感測網路應用 | zh_TW |
| dc.description.abstract | Multi-dimensional temporal data set is the common format in sensor network applications to store sampled temporal data. As time goes on, the size of the core tables in the data set may increase to enormous size and the tables become not manageable. In order to reduce storage space and allow online query, how to trade off data compression effectiveness for on-line query performance is a challenge issue. In this paper, we are concerned with an effective framework for temporal data set that does not scarify online query performance and is specifically designed for very large sensor network database. The sampled data are compressed using several candidate approaches including dictionary-base compress and entropy coding. In the mean time,on-line queries are conducted without decompressing the compressed data set so as to enhance the query performance. Experiments are conducted on a digital power meter, Sonoma redwood, and Sensor KDD databases to evaluate the proposed methodologies in terms of data compression ratio and data query speed. The results show that the compression ratio are at most 31% and the coding efficiency achieves over 75%. In the mean time, the increased overhead for online query is limited up to 8% and overall query performance is even better than the uncompressed data.
Keywords - Data compression, sensor network, sensor network applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:54:16Z (GMT). No. of bitstreams: 1 ntu-99-R97922059-1.pdf: 4131567 bytes, checksum: 15d15ac0e2772b6419a3e66d5026c525 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 3 Data Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 CODEBOOK Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 STORE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 4 Query Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Aggregation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4 Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Compression Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.1 Columns in the Experimental Tables . . . . . . . . . . . . . . . . . 23 5.2.2 Tables with Different Databases . . . . . . . . . . . . . . . . . . . . 25 5.3 Query Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.1 Table Scan and Selection Query Time . . . . . . . . . . . . . . . . 26 5.3.2 Comparison with Other Compression Tools . . . . . . . . . . . . 27 Chapter 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 30 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 | |
| dc.language.iso | en | |
| dc.subject | 感測網路應用 | zh_TW |
| dc.subject | 資料壓縮 | zh_TW |
| dc.subject | 感測網路 | zh_TW |
| dc.subject | sensor network applications | en |
| dc.subject | Data compression | en |
| dc.subject | sensor network | en |
| dc.title | 大型感測網路資料庫之資料壓縮與查詢 | zh_TW |
| dc.title | Data Compression and Query for Large Scale Sensor Network Database | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭大維,張瑞益,洪士灝 | |
| dc.subject.keyword | 資料壓縮,感測網路,感測網路應用, | zh_TW |
| dc.subject.keyword | Data compression,sensor network,sensor network applications, | en |
| dc.relation.page | 34 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
