Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46024
Title: 線性迴歸模型具巢狀結構下透過廣義自由度選取最適模型之探討
Study on adaptive model selection through generalized degrees of freedom in nested linear regression models
Authors: Chiuan-Fa Tang
湯泉發
Advisor: 陳宏
Keyword: 最是模型選取方法,廣義最終誤差選擇方法,廣義自由度,
adaptive model selection,final prediction error,generalized degrees of freedom,
Publication Year : 2010
Degree: 碩士
Abstract: 選擇模型來解釋資料的方法有很多種, 像是AIC (Akaike
1974), BIC (Schwarz 1978), 以及Mallows’ Cp. 當考慮線性
迴歸模型選取時, 可將上述的模型選取法則寫成廣義最終
誤差的選擇方法, 而各個方法之間的差異僅在於選擇方法
的懲罰項λ. Shen and Ye (2002) 提出從所有可能的廣義最
終誤差選擇方法中, 透過決定懲罰項λ 來找出來最適模型
的選取方法.
在本文裡我們將會介紹由Shen and Ye (2002) 提出所謂
透過廣義自由度選取最適模型. 並且誤差為常態分配, 線
性迴歸模型具巢狀結構以及某些正規條件下來評量這個
方法. 我們將會透過模擬的方式呈現如果這個方法如果不
估計廣義自由度而是帶入真實值. 那麼將不會是完全地選
到最適當的模型. 並且將給這樣的結果解釋.
Various model selection criteria have been proposed to fit models to data, such as
AIC (Akaike 1974), BIC (Schwarz 1978), and Mallows’ Cp (1973). For linear regression
with suitable regularity conditions, we can combine those criterion into general
final prediction error criterion with different lambda. If we consider all possible general
final prediction error criterion over an interval including λ = 2 and λ = log n.
Shen and Ye (2002) proposed the adaptive model selection by determining proper
lambda through general final prediction error.
In this thsis, we will introduce the adaptive models selection criterion through
generalized degrees of freedom which proposed by Shen and Ye (2002) and evaluate
the performance of this criterion in a most widely used linear regression model with
normal error and some further bias and sample size assumption. We will demonstrate
that the adaptive model selection criterion is not fully adaptive. As a remedy, we
suggest that the interval should be restricted. We will provide some simulation results
to show the performance of adaptive model selection through generalized degrees of
freedom in nested linear regression models and the conclusions. We will provide
some simulation results to motivate the procedure of solving problems and support
our conclusions.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46024
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
560.44 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved