Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46024
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏
dc.contributor.authorChiuan-Fa Tangen
dc.contributor.author湯泉發zh_TW
dc.date.accessioned2021-06-15T04:51:38Z-
dc.date.available2010-08-04
dc.date.copyright2010-08-04
dc.date.issued2010
dc.date.submitted2010-08-02
dc.identifier.citationAkaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood
Principle. In: B.N. Petrov and F. Csaki, eds. Second International
Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267-
281.
Mallows, C.L. (1973). Some Comments on Cp. Technometrics, 15(4), pp. 661-675.
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics,
6(2), pp. 461-464.
Shen, G. and Ye (2002). Adaptive Model Selection, Journal of American Statistical
Association, 97, pp. 210-221.
Spitzer, F.(1959). A combinatorial Lemma and Its Application to Probability Theory,
Transactions of the American Mathematical Society. 82, pp. 323-329.
Stein, C.M. (1981). Estimation of the Mean of a Multivariate Normal Distribution.
The Annals of Statistics. 9(6), pp. 1135-1151.
Teicher, H. (1984). Exponential Bounds for Large Deviations of Sums of Unbounded
Random Variables. Sankhy a: The Indian Journal of Statistics, Series A. 46(1),
pp. 41-53.
Wherry, R.J. (1931). A New Formula for Predicting the Shrinkage of the Coefficient
of Multiple Correlation. The Annals of Mathematical Statistics, 2(4), pp. 440-
457.
Woodroofe, M. (1982). On Model Selection and the Arc Sine Laws, The Annals of
Statistics, 10, pp. 1182-1194.
Ye, J. (1998). On Measuring and Correcting the Effects of Data Mining and Model
selection, Journal of the American Statistical Association, 93(441),pp. 120-131.
Zhang, P. (1992). On the Distributional Properties of Model Selection Criteria.
Journal of the American Statistical Association, 87(4) pp. 732-737.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46024-
dc.description.abstract選擇模型來解釋資料的方法有很多種, 像是AIC (Akaike
1974), BIC (Schwarz 1978), 以及Mallows’ Cp. 當考慮線性
迴歸模型選取時, 可將上述的模型選取法則寫成廣義最終
誤差的選擇方法, 而各個方法之間的差異僅在於選擇方法
的懲罰項λ. Shen and Ye (2002) 提出從所有可能的廣義最
終誤差選擇方法中, 透過決定懲罰項λ 來找出來最適模型
的選取方法.
在本文裡我們將會介紹由Shen and Ye (2002) 提出所謂
透過廣義自由度選取最適模型. 並且誤差為常態分配, 線
性迴歸模型具巢狀結構以及某些正規條件下來評量這個
方法. 我們將會透過模擬的方式呈現如果這個方法如果不
估計廣義自由度而是帶入真實值. 那麼將不會是完全地選
到最適當的模型. 並且將給這樣的結果解釋.
zh_TW
dc.description.abstractVarious model selection criteria have been proposed to fit models to data, such as
AIC (Akaike 1974), BIC (Schwarz 1978), and Mallows’ Cp (1973). For linear regression
with suitable regularity conditions, we can combine those criterion into general
final prediction error criterion with different lambda. If we consider all possible general
final prediction error criterion over an interval including λ = 2 and λ = log n.
Shen and Ye (2002) proposed the adaptive model selection by determining proper
lambda through general final prediction error.
In this thsis, we will introduce the adaptive models selection criterion through
generalized degrees of freedom which proposed by Shen and Ye (2002) and evaluate
the performance of this criterion in a most widely used linear regression model with
normal error and some further bias and sample size assumption. We will demonstrate
that the adaptive model selection criterion is not fully adaptive. As a remedy, we
suggest that the interval should be restricted. We will provide some simulation results
to show the performance of adaptive model selection through generalized degrees of
freedom in nested linear regression models and the conclusions. We will provide
some simulation results to motivate the procedure of solving problems and support
our conclusions.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T04:51:38Z (GMT). No. of bitstreams: 1
ntu-99-R97221038-1.pdf: 573891 bytes, checksum: b29c203436f909aab834c81462cd2667 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsContents
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract (in Chinese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract (in English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Introduction 1
2 Adaptive Model Selection through Generalized Degrees of Freedom
In Nested Competing Models 6
2.1 Unbiased Risk Estimator with Considering General Final Prediction
Error Model Selection Criterion . . . . . . . . . . . . . . . . . . . . . 7
2.2 Select Model by Minimizing the Unbiased Risk Estimator for All General
Final Prediction Error Model Selection Criteria . . . . . . . . . . 9
3 Adaptive Model Selection through Generalized Degrees of Freedom
in Nested Competing Models with Regular Conditions 11
3.1 General FPE Criterion versus Random Walk . . . . . . . . . . . . . . 13
3.2 The Generalized Degrees of freedom in General FPE criterion with
different λ ∈ [0, log n]. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Analysis of Adaptive Model Selection Criterion over [0, log n] . . . . . 17
3.3.1 Evaluate g0(λ) when λ ∈ [0, 0.5]. . . . . . . . . . . . . . . . . 21
3.3.2 Evaluate g0(λ) when λ ∈ [2, log n]. . . . . . . . . . . . . . . . 24
3.3.3 Evaluate g0(λ) when λ ∈ (0.5, 2). . . . . . . . . . . . . . . . . 33
4 Conclusion 35
Appendix 37
References 41
v
dc.language.isoen
dc.subject廣義最終誤差選擇方法zh_TW
dc.subject最是模型選取方法zh_TW
dc.subject廣義自由度zh_TW
dc.subjectadaptive model selectionen
dc.subjectfinal prediction erroren
dc.subjectgeneralized degrees of freedomen
dc.title線性迴歸模型具巢狀結構下透過廣義自由度選取最適模型之探討zh_TW
dc.titleStudy on adaptive model selection through generalized degrees of freedom in nested linear regression modelsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳素雲,黃信誠,杜憶萍,江金倉
dc.subject.keyword最是模型選取方法,廣義最終誤差選擇方法,廣義自由度,zh_TW
dc.subject.keywordadaptive model selection,final prediction error,generalized degrees of freedom,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2010-08-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
560.44 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved