請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46024完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏 | |
| dc.contributor.author | Chiuan-Fa Tang | en |
| dc.contributor.author | 湯泉發 | zh_TW |
| dc.date.accessioned | 2021-06-15T04:51:38Z | - |
| dc.date.available | 2010-08-04 | |
| dc.date.copyright | 2010-08-04 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-02 | |
| dc.identifier.citation | Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood
Principle. In: B.N. Petrov and F. Csaki, eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267- 281. Mallows, C.L. (1973). Some Comments on Cp. Technometrics, 15(4), pp. 661-675. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), pp. 461-464. Shen, G. and Ye (2002). Adaptive Model Selection, Journal of American Statistical Association, 97, pp. 210-221. Spitzer, F.(1959). A combinatorial Lemma and Its Application to Probability Theory, Transactions of the American Mathematical Society. 82, pp. 323-329. Stein, C.M. (1981). Estimation of the Mean of a Multivariate Normal Distribution. The Annals of Statistics. 9(6), pp. 1135-1151. Teicher, H. (1984). Exponential Bounds for Large Deviations of Sums of Unbounded Random Variables. Sankhy a: The Indian Journal of Statistics, Series A. 46(1), pp. 41-53. Wherry, R.J. (1931). A New Formula for Predicting the Shrinkage of the Coefficient of Multiple Correlation. The Annals of Mathematical Statistics, 2(4), pp. 440- 457. Woodroofe, M. (1982). On Model Selection and the Arc Sine Laws, The Annals of Statistics, 10, pp. 1182-1194. Ye, J. (1998). On Measuring and Correcting the Effects of Data Mining and Model selection, Journal of the American Statistical Association, 93(441),pp. 120-131. Zhang, P. (1992). On the Distributional Properties of Model Selection Criteria. Journal of the American Statistical Association, 87(4) pp. 732-737. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46024 | - |
| dc.description.abstract | 選擇模型來解釋資料的方法有很多種, 像是AIC (Akaike
1974), BIC (Schwarz 1978), 以及Mallows’ Cp. 當考慮線性 迴歸模型選取時, 可將上述的模型選取法則寫成廣義最終 誤差的選擇方法, 而各個方法之間的差異僅在於選擇方法 的懲罰項λ. Shen and Ye (2002) 提出從所有可能的廣義最 終誤差選擇方法中, 透過決定懲罰項λ 來找出來最適模型 的選取方法. 在本文裡我們將會介紹由Shen and Ye (2002) 提出所謂 透過廣義自由度選取最適模型. 並且誤差為常態分配, 線 性迴歸模型具巢狀結構以及某些正規條件下來評量這個 方法. 我們將會透過模擬的方式呈現如果這個方法如果不 估計廣義自由度而是帶入真實值. 那麼將不會是完全地選 到最適當的模型. 並且將給這樣的結果解釋. | zh_TW |
| dc.description.abstract | Various model selection criteria have been proposed to fit models to data, such as
AIC (Akaike 1974), BIC (Schwarz 1978), and Mallows’ Cp (1973). For linear regression with suitable regularity conditions, we can combine those criterion into general final prediction error criterion with different lambda. If we consider all possible general final prediction error criterion over an interval including λ = 2 and λ = log n. Shen and Ye (2002) proposed the adaptive model selection by determining proper lambda through general final prediction error. In this thsis, we will introduce the adaptive models selection criterion through generalized degrees of freedom which proposed by Shen and Ye (2002) and evaluate the performance of this criterion in a most widely used linear regression model with normal error and some further bias and sample size assumption. We will demonstrate that the adaptive model selection criterion is not fully adaptive. As a remedy, we suggest that the interval should be restricted. We will provide some simulation results to show the performance of adaptive model selection through generalized degrees of freedom in nested linear regression models and the conclusions. We will provide some simulation results to motivate the procedure of solving problems and support our conclusions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T04:51:38Z (GMT). No. of bitstreams: 1 ntu-99-R97221038-1.pdf: 573891 bytes, checksum: b29c203436f909aab834c81462cd2667 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | Contents
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract (in Chinese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract (in English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction 1 2 Adaptive Model Selection through Generalized Degrees of Freedom In Nested Competing Models 6 2.1 Unbiased Risk Estimator with Considering General Final Prediction Error Model Selection Criterion . . . . . . . . . . . . . . . . . . . . . 7 2.2 Select Model by Minimizing the Unbiased Risk Estimator for All General Final Prediction Error Model Selection Criteria . . . . . . . . . . 9 3 Adaptive Model Selection through Generalized Degrees of Freedom in Nested Competing Models with Regular Conditions 11 3.1 General FPE Criterion versus Random Walk . . . . . . . . . . . . . . 13 3.2 The Generalized Degrees of freedom in General FPE criterion with different λ ∈ [0, log n]. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Analysis of Adaptive Model Selection Criterion over [0, log n] . . . . . 17 3.3.1 Evaluate g0(λ) when λ ∈ [0, 0.5]. . . . . . . . . . . . . . . . . 21 3.3.2 Evaluate g0(λ) when λ ∈ [2, log n]. . . . . . . . . . . . . . . . 24 3.3.3 Evaluate g0(λ) when λ ∈ (0.5, 2). . . . . . . . . . . . . . . . . 33 4 Conclusion 35 Appendix 37 References 41 v | |
| dc.language.iso | en | |
| dc.subject | 廣義最終誤差選擇方法 | zh_TW |
| dc.subject | 最是模型選取方法 | zh_TW |
| dc.subject | 廣義自由度 | zh_TW |
| dc.subject | adaptive model selection | en |
| dc.subject | final prediction error | en |
| dc.subject | generalized degrees of freedom | en |
| dc.title | 線性迴歸模型具巢狀結構下透過廣義自由度選取最適模型之探討 | zh_TW |
| dc.title | Study on adaptive model selection through generalized degrees of freedom in nested linear regression models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳素雲,黃信誠,杜憶萍,江金倉 | |
| dc.subject.keyword | 最是模型選取方法,廣義最終誤差選擇方法,廣義自由度, | zh_TW |
| dc.subject.keyword | adaptive model selection,final prediction error,generalized degrees of freedom, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 560.44 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
