Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44779
Title: 利用代理模型尋找最大能隙之光子晶體結構
Optimizing Photonic Crystal Structures via Surrogate
Modelling
Authors: Chen-Chien Wang
王振謙
Advisor: 王偉仲
Keyword: 光子晶體,能隙,最佳化,代理模型,
photonic crystal,surrogate modelling,bandgap,optimization,
Publication Year : 2010
Degree: 碩士
Abstract: 光子晶體的能帶結構,可用馬克思威方程式描述,是大個大型矩陣的特徵值問題。計算光子晶體的能帶結構相當耗時,找尋不同幾何形狀中,有最佳能隙的結構更是一件困難的工作。
在這篇文章中我們探討簡單立方結構,對固定的球、柱半徑,我們需要改變不同的入射光路徑找尋第五及第六特徵值間隙,再改變不同的球、柱半徑,找尋最大的特徵值差。這是個二層的最佳化問題,我們把能隙看成一個未知的函數,欲找尋其最大值,而找尋最大特徵值差又是個最佳化問題。傳統的方法如基因演算法,並不適合,此函數無法承受成千上萬次的取值。
我們利用Kriging 方法,利用少許取到的樣本模擬未知函數的行為,再使用期望進步法(expected improvement) 選取最可能發生最大值的位置,可在幾十次函數取值之下,得到不錯的結果。
Finding the best configuration of photonic crystals, which has maximum bandgapmidgap ratio is a time consuming process. The bandgap structures can be described as Maxwell’s equations, involving solving eigenvalue problems of large matrices.
In this article, we focus on maximizing the bandgap structure of simple cubic photonic crystals. The problem is a two stage optimization problem. For one fixed sphere radius and cylindar radius configuration, we need to find 5th and the 6th eigenvalues along one specific path and the bandgap between them. Next, vary the radii, and find the overall maximum bandgap-midgap ratio. Traditional methods such as genetic algorithm does not work properly due to massive function evaluations.
We use surrogate modelling method, in particular, the Kriging method to deal
with this problem. We use just a few samples to build a model to mimic the behavior of the unknown bandgap function, and then using expected improvement method to choose points may have true maximum. In our experiments, we get impressive results within fifty radii selecting.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44779
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-99-1.pdf
  Restricted Access
2.22 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved