請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44779
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王偉仲 | |
dc.contributor.author | Chen-Chien Wang | en |
dc.contributor.author | 王振謙 | zh_TW |
dc.date.accessioned | 2021-06-15T03:54:45Z | - |
dc.date.available | 2011-07-01 | |
dc.date.copyright | 2010-07-06 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-06-28 | |
dc.identifier.citation | [1] R. Biswas, M. M. Sigalas, and K.-M. Ho. Three-dimensional photonic band gaps in modified simple cubic lattice. Physical Review B, 65:205121, 2002.
[2] A. I. J. Forrester, A. S′obester, and A. J. Keane. Engineering Design via Surrogate Modelling, A Practical Guide. Wiley, 2008. [3] S. John. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23):2486–2489, 1987. [4] Donald R. Jones, Matthias schonlau, and William J. Welch. Efficient global optimization of expensive black-box functions. Journal of Glabal Optimization, 13:455–492, 1998. [5] M. Locatelli. Bayesian algorithms for one-dimensional global optimization. Journal of Global Optimization, 10:57–76, 1997. [6] S. N. Loghaven, H. B. Nielsen, and J. Søndergaard. Dace, a matlab kriging toolbox, technical report. [7] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer experiments. Statistical Science, 4(4):409–423, 1989. [8] T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Experiments. Springer, 2003. [9] A. Torn and A. Zilinskas. Global Optimization. Springer, 1987. [10] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 58(20):2059–2062, 1987. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/44779 | - |
dc.description.abstract | 光子晶體的能帶結構,可用馬克思威方程式描述,是大個大型矩陣的特徵值問題。計算光子晶體的能帶結構相當耗時,找尋不同幾何形狀中,有最佳能隙的結構更是一件困難的工作。
在這篇文章中我們探討簡單立方結構,對固定的球、柱半徑,我們需要改變不同的入射光路徑找尋第五及第六特徵值間隙,再改變不同的球、柱半徑,找尋最大的特徵值差。這是個二層的最佳化問題,我們把能隙看成一個未知的函數,欲找尋其最大值,而找尋最大特徵值差又是個最佳化問題。傳統的方法如基因演算法,並不適合,此函數無法承受成千上萬次的取值。 我們利用Kriging 方法,利用少許取到的樣本模擬未知函數的行為,再使用期望進步法(expected improvement) 選取最可能發生最大值的位置,可在幾十次函數取值之下,得到不錯的結果。 | zh_TW |
dc.description.abstract | Finding the best configuration of photonic crystals, which has maximum bandgapmidgap ratio is a time consuming process. The bandgap structures can be described as Maxwell’s equations, involving solving eigenvalue problems of large matrices.
In this article, we focus on maximizing the bandgap structure of simple cubic photonic crystals. The problem is a two stage optimization problem. For one fixed sphere radius and cylindar radius configuration, we need to find 5th and the 6th eigenvalues along one specific path and the bandgap between them. Next, vary the radii, and find the overall maximum bandgap-midgap ratio. Traditional methods such as genetic algorithm does not work properly due to massive function evaluations. We use surrogate modelling method, in particular, the Kriging method to deal with this problem. We use just a few samples to build a model to mimic the behavior of the unknown bandgap function, and then using expected improvement method to choose points may have true maximum. In our experiments, we get impressive results within fifty radii selecting. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T03:54:45Z (GMT). No. of bitstreams: 1 ntu-99-R97221044-1.pdf: 2273315 bytes, checksum: 0251d4bd3d0e53202843b8b8f028dd92 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 1 中文摘要3
2 Abstract 3 3 Introduction 6 3.1 Photonic crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 The eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Main Ideas 8 4.1 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 Expected Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Optimization Process 13 5.1 Inner Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Outer Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2.1 Theoretical Algorithm . . . . . . . . . . . . . . . . . . . . . . 16 5.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6 Numerical Results 21 6.1 Inner Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2 Outer Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Conclusion 25 | |
dc.language.iso | en | |
dc.title | 利用代理模型尋找最大能隙之光子晶體結構 | zh_TW |
dc.title | Optimizing Photonic Crystal Structures via Surrogate
Modelling | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳瑞彬,邱奕鵬 | |
dc.subject.keyword | 光子晶體,能隙,最佳化,代理模型, | zh_TW |
dc.subject.keyword | photonic crystal,surrogate modelling,bandgap,optimization, | en |
dc.relation.page | 36 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-06-28 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。