Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43835
Title: 探勘時間性社交網路樣式
Mining Temporal Social Network Patterns
Authors: Hsun-Ping Hsieh
解巽評
Advisor: 李瑞庭(Anthony J. T. Lee)
Keyword: 資料探勘,時間性社交網路,封閉性樣式,
data mining,temporal social network,closed patterns,
Publication Year : 2009
Degree: 碩士
Abstract: 隨著社交網路應用不斷推陳出新,如何從複雜且龐大的社交網路中找出有意義的樣式已成為一個熱門的研究議題。我們可以將社交的互動關係用一個至多個社交網路來表示,而每個互動關係都有各自相對應的時間區間,藉由資料探勘的技術,可以幫助我們在時間性社交網路中發現物件間頻繁的互動行為。因此,本篇論文探討如何在時間性社交網路中尋找頻繁樣式,我們提出一個有效率的探勘演算法叫「TSP-Miner」,用來找尋時間性社交網路中的封閉性頻繁樣式。我們所提出的演算法主要包括兩個階段。首先,我們產生所有長度為一的頻繁樣式。然後,我們利用頻繁樣式樹以深先搜尋法的方式遞迴產生所有的頻繁樣式。在產生的過程中,除了檢查這些樣式是否為封閉外,我們也利用修剪策略刪除不必要的候選樣式。由於TSP-Miner只需掃描資料庫一次且不會產生不必要的樣式,實驗結果顯示,不管在合成或真實資料庫中,我們所提出的方法皆優於改良式的Apriori演算法。
With an increasing interest in social network applications, how to find meaningful patterns from social networks has attracted more and more attention. The interactions in a social network can naturally be modeled by a temporal network, where a node in the network represents an individual, and an edge between two nodes denotes the interaction between two individuals in a certain time interval. Mining frequent patterns in temporal social networks can help us discover frequent interaction behaviors. Therefore, in this thesis, we propose a novel algorithm, TSP-Miner (Temporal Social network Patterns Miner), to mine frequent closed temporal social network patterns. The proposed algorithm consists of two phases. First, we find all frequent patterns of length one in the database. Second, for each pattern found in the first phase, we recursively generate frequent patterns by a frequent pattern tree in a depth-first search manner. During the mining process, we eliminate impossible candidates and check whether the frequent patterns are closed or not. Since the TSP-Miner only needs to scan the database once and doesn’t generate unnecessary candidates, it is more efficient and scalable than the modified Apriori algorithm. The experiment results show that the TSP-Miner outperforms the modified Apriori in both synthetic and real datasets.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43835
Fulltext Rights: 有償授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
585.93 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved