請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭(Anthony J. T. Lee) | |
| dc.contributor.author | Hsun-Ping Hsieh | en |
| dc.contributor.author | 解巽評 | zh_TW |
| dc.date.accessioned | 2021-06-15T02:30:03Z | - |
| dc.date.available | 2012-08-19 | |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-15 | |
| dc.identifier.citation | [1]R. Agrawal, R. Srikant, Fast algorithms for mining association rules, Proceedings of the International Conference on Very Large Data Bases, Santiago, Chile, 1994, pp. 487-499.
[2]R. Agrawal, R. Srikant, Mining sequential patterns, Proceedings of the International Conference on Data Engineering, Taipei, Taiwan, 1995, pp. 3-14. [3]J. Ayres, J.E. Gehrke, T. Yiu, J. Flannick, Sequential pattern mining using a bitmap representation, Proceedings of the ACM SIGMOD International Conference on Knowledge Discovery in Database, Edmonton, Canada, 2002, pp. 429-435. [4]T.S. Chen, S.C. Hsu, Mining frequent tree-like patterns in large datasets, Data and Knowledge Engineering, Vol. 62, No. 1, 2007, pp. 65-83. [5]J. Cheng, Y. Ke, W. Ng, δ-Tolerance closed frequent itemsets, Proceedings of the IEEE International Conference on Data Mining, Hong Kong, China, 2006, pp. 139-148. [6]C.I. Ezeife, M. Monwar, SSM: A frequent sequential data stream patterns miner, Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, Honolulu, Hawaii, USA, 2007, pp. 120-126. [7]G. Grahne, J. Zhu, Fast algorithms for frequent itemset mining using FP-trees, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 10, 2005, pp. 1347-1362. [8]E. Gudes, E. Shimony N. Vanetik, Discovering frequent graph patterns using disjoint paths, IEEE Transactions on Knowledge and Data Engineering, Vol. 18, No. 11, 2006, pp. 1441-1456. [9]J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, Proceedings of the ACM SIGMOD International Conference on Management of Data, Dallas, USA, 2000, pp. 1-12. [10]J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.C. Hsu, FreeSpan: Frequent pattern-projected sequential pattern mining, Proceedings of International Conference on Knowledge Discovery and Data Mining, Boston, USA, 2000, pp. 355-359. [11]J. Huan, W. Wang, J. Prins, Efficient mining of frequent subgraphs in the presence of isomorphism, Proceedings of IEEE International Conference on Data Mining, Melbourne, Florida, USA, 2003, pp. 549-552. [12]A. Inokuchi, T. Washio, H.Motoda, An Apriori-based algorithm for mining frequent substructures from graph data, Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, France, 2000, pp. 13-23. [13]D. Jensen, M, Rattigan, H. Blau, Information awareness: A prospective technical Assessment, Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 378-387 [14]R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, G. Agarwal, Discovery frequent topological structures from graph datasets, Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, USA, 2005, pp. 606-611. [15]M. Kuramochi, G. Karypis, Frequent subgraph discovery, Proceedings of IEEE International Conference on Data Mining, California, USA, 2001, pp. 313-320. [16]M. Leleu, C. Rigotti, Jean-Francois Boulicaut, G. Euvrard, GO-SPADE: Mining sequential patterns over datasets with consecutive repetitions, Proceedings of International Conference on Machine Learning and Data Mining, Leipzig, Germany, 2003, pp. 293-306. [17]C. Lucchese, S. Orlando, R. Perego, Fast and memory efficient mining of frequent closed itemsets, IEEE Transactions on Knowledge and Data Engineering, Vol. 18, No. 1, 2006, pp. 21-36. [18]H.D.K. Moonesinghe, S. Fodeh, P.N. Tan, Frequent closed itemset mining using prefix graphs with an efficient flow-based pruning strategy, Proceedings of IEEE International Conference on Data Mining, Hong Kong, China, 2006, pp. 426-435. [19]G.K. Palshikar, M.S. Kale, M.M. Apte, Association rules mining using heavy itemsets, Data and Knowledge Engineering, Vol. 61, No. 1, 2007, pp. 93-113. [20]N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, Proceedings of the 7th International Conference on Database Theory, Jerusalem, Israel, 1999, pp. 398-416. [21]J. Pei, J. Han, R. Mao, CLOSET: An efficient algorithm for mining frequent closed itemsets, Proceedings of the 5th ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Dallas, USA, 2000, pp. 11-20. [22]J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth, Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001, pp. 215-224. [23]B. Rozenberg, E. Gudes, Association rules mining in vertically partitioned databases, Data and Knowledge Engineering, Vol. 59, No. 2, 2006, pp. 378-396. [24]T. Uno, T. Asai, Y. Uchida, H. Arimura, An efficient algorithm for enumerating closed patterns in transaction databases, Proceedings of the 7th International Conference on Discovery Science, Padova, Italy, 2004, pp. 16-31. [25]J. Wang, W. Hsu, M. Lee, C. Sheng, A partition-based approach to graph mining, Proceedings of the International Conference on Data Engineering, Atlanta, 2006, pp. 72-72. [26]J. Wang, J. Han, J. Pei, CLOSET+: Searching for the best strategies for mining frequent closed itemsets, Proceedings of the International Conference on Knowledge Discovery and Data Mining, Washington, D.C., USA, 2003, pp. 236-245. [27]J. Wang, J. Han, C. Li, Frequent closed sequence mining without candidate maintenance, IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 8, 2007, pp. 1042-1056. [28]X. Yan, J. Han, gSpan: Graph-based substructure pattern mining, Proceedings of IEEE International Conference on Data Mining, Maebashi City, Japan, 2002, pp. 721-724. [29]X. Yan, J. Han, R. Afshar, CloSpan: Mining closed sequential patterns in large datasets, Proceedings of SIAM International Conference on Data Mining, 2003, pp. 166-177. [30]X. Yan, J. Han, CloseGraph: Mining closed frequent graph patterns, Proceeding of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, USA, 2003, pp. 286-295. [31]H. Yao, H. Hamilton, Mining itemset utilities from transaction databases, Data and Knowledge Engineering, Vol. 59, No. 3, 2007, pp. 603-626. [32]U. Yun, J.J. Leggett, WSpan: Weighted sequential pattern mining in large sequence databases, Proceedings of International IEEE Conference on Intelligent Systems, London, United Kingdom, 2006, pp. 512-517. [33]M.J. Zaki, SPADE: An efficient algorithm for mining frequent sequences, Machine Learning, Vol. 42, No. 1-2, 2001, pp. 31-60. [34]M.J. Zaki, C. Hsiao, Efficient algorithms for mining closed itemsets and their lattice structure, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 4, 2005, pp. 462-478. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43835 | - |
| dc.description.abstract | 隨著社交網路應用不斷推陳出新,如何從複雜且龐大的社交網路中找出有意義的樣式已成為一個熱門的研究議題。我們可以將社交的互動關係用一個至多個社交網路來表示,而每個互動關係都有各自相對應的時間區間,藉由資料探勘的技術,可以幫助我們在時間性社交網路中發現物件間頻繁的互動行為。因此,本篇論文探討如何在時間性社交網路中尋找頻繁樣式,我們提出一個有效率的探勘演算法叫「TSP-Miner」,用來找尋時間性社交網路中的封閉性頻繁樣式。我們所提出的演算法主要包括兩個階段。首先,我們產生所有長度為一的頻繁樣式。然後,我們利用頻繁樣式樹以深先搜尋法的方式遞迴產生所有的頻繁樣式。在產生的過程中,除了檢查這些樣式是否為封閉外,我們也利用修剪策略刪除不必要的候選樣式。由於TSP-Miner只需掃描資料庫一次且不會產生不必要的樣式,實驗結果顯示,不管在合成或真實資料庫中,我們所提出的方法皆優於改良式的Apriori演算法。 | zh_TW |
| dc.description.abstract | With an increasing interest in social network applications, how to find meaningful patterns from social networks has attracted more and more attention. The interactions in a social network can naturally be modeled by a temporal network, where a node in the network represents an individual, and an edge between two nodes denotes the interaction between two individuals in a certain time interval. Mining frequent patterns in temporal social networks can help us discover frequent interaction behaviors. Therefore, in this thesis, we propose a novel algorithm, TSP-Miner (Temporal Social network Patterns Miner), to mine frequent closed temporal social network patterns. The proposed algorithm consists of two phases. First, we find all frequent patterns of length one in the database. Second, for each pattern found in the first phase, we recursively generate frequent patterns by a frequent pattern tree in a depth-first search manner. During the mining process, we eliminate impossible candidates and check whether the frequent patterns are closed or not. Since the TSP-Miner only needs to scan the database once and doesn’t generate unnecessary candidates, it is more efficient and scalable than the modified Apriori algorithm. The experiment results show that the TSP-Miner outperforms the modified Apriori in both synthetic and real datasets. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T02:30:03Z (GMT). No. of bitstreams: 1 ntu-98-R96725019-1.pdf: 599988 bytes, checksum: 042c8bdbfed600b64a5937bcdd7d5d08 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Table of Contents.................................i
List of Figures.................................iii List of Tables...................................iv Chapter1 Introduction.............................1 Chapter2 Problem Definition .......................6 Chapter3 The Proposed Method.....................10 3.1.Frequent pattern enumeration.................10 3.2.The closure checking and pruning strategies..12 3.3.The TSP-Miner algorithm......................13 3.4.An example...................................16 Chapter4 Performance Analysis....................19 4.1.Synthetic datasets...........................19 4.2.Performance evaluation on synthetic datasets.20 4.3.Performance evaluation on real datasets......25 Chapter5 Conclusions and Future Work.............30 References.......................................32 | |
| dc.language.iso | en | |
| dc.subject | 封閉性樣式 | zh_TW |
| dc.subject | 時間性社交網路 | zh_TW |
| dc.subject | 資料探勘 | zh_TW |
| dc.subject | data mining | en |
| dc.subject | closed patterns | en |
| dc.subject | temporal social network | en |
| dc.title | 探勘時間性社交網路樣式 | zh_TW |
| dc.title | Mining Temporal Social Network Patterns | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳彥良(Chen, Yen-Liang),劉敦仁(Duen-Ren Liu) | |
| dc.subject.keyword | 資料探勘,時間性社交網路,封閉性樣式, | zh_TW |
| dc.subject.keyword | data mining,temporal social network,closed patterns, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-08-17 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 585.93 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
