Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43615
Title: 應用於超寬頻鎖相迴路之毫米波關鍵零組件
MMW Key Components for an Ultra-Wideband Phase-Locked Loop
Authors: Chung-Chun Chen
陳重均
Advisor: 曹恆偉,王暉
Keyword: 互補式金氧半導體,注入鎖定除頻器,毫米波,多推式,鎖相迴路,三推式,壓控振盪器,寬頻的輸入鎖定範圍,寬頻率調整範圍,
CMOS,injection-locked frequency divider (ILFD),millimeter-wave (MMW),multi-push,phase-locked loop (PLL),triple-push,voltage-controlled oscillator (VCO),wide input locking range,wide tuning range,
Publication Year : 2009
Degree: 博士
Abstract: 本論文研究方向是著重於研究超寬頻的毫米波鎖相迴路裡的關鍵零組件,包括了超寬頻率調整範圍的壓控振盪器與寬輸入鎖定範圍的注入鎖定除頻器。
由於高速資料傳輸的需求增加,寬頻的頻寬與毫米波的頻帶已被應用於高速無線傳輸。因此,在毫米波寬頻收發機裡需要一個超寬頻的毫米波鎖相迴路來產生所需要的時脈或是本地振盪器。然而,如此超寬頻的毫米波鎖相迴路卻受限於超寬頻率調整範圍的壓控振盪器與寬輸入鎖定範圍的注入鎖定除頻器,因此,在本論文裡,使用了一種環性為主三推式壓控振盪器的架構與先進的CMOS製程實現了超寬頻率調整範圍的壓控振盪器。這個壓控振盪器的分析與設計上之考量均有詳細的描述,實驗結果也展示了此超寬頻率調整範圍是目前為止最寬的頻率調整範圍。雖然此壓控振盪器的相位雜訊不算好,但寬頻可調範圍的特性可實現超寬頻鎖相迴路。
除了超寬頻率調整範圍的壓控振盪器之外,寬輸入鎖定範圍的注入鎖定除頻器也是必需的。注入鎖定除頻器可被分成兩類,分別為LC型與環型。在較低的操作頻率下,使用同相位注入的方法製作了無電感的環型除四注入鎖定除頻器,且描述了分析與設計考量。實驗結果展示了這個除四注入鎖定除頻器達到了相當寬的輸入鎖定範圍,儘管環型除四注入鎖定除頻器也許無法操作在非常高的頻率,搭配多推式壓控振盪器,此注入鎖定除頻器或許可以整合到應用於毫米波傳輸系統之鎖相迴路的第一級除頻器。
在較高的操作頻率下,以提出的雙混波技術製作了LC型V-頻帶 (50-75 GHz) 與W-頻帶 (75-110 GHz) 的注入鎖定除頻器。引進了電壓轉換增益與其相關的式子來針對混波式注入鎖定除頻器去解釋了寬頻輸入鎖定範圍,另外也仔細地描述了設計考量與步驟。根據此設計的準則,V-頻帶除二的注入鎖定除頻器在沒有任何調整的機制下達到了幾乎是整個V-頻帶的輸入鎖定範圍,這麼寬頻的輸入鎖定範圍特性可實現超寬頻鎖相迴路。另外,提出的除四W-頻帶注入鎖定除頻器克服了在如此高的操作頻率下,在第一級注入鎖定除頻器與第二級除頻器之間的輸入鎖定範圍不匹配的問題。儘管W-頻帶注入鎖定除頻器不能像V-頻帶注入鎖定除頻器有這麼寬的輸入鎖定範圍,跟其他先前的文獻比較,還是有相當寬頻的輸入鎖定範圍。
The aim of this dissertation is to develop the key components in a millimeter-wave (MMW) ultra-wideband phase-locked loop (PLL), namely an ultra-wide tuning range voltage-controlled oscillator (VCO) and a wide input locking range injection-locked frequency divider (ILFD).
Owing to the increasing demand for high-speed data transmission, broadband and MMW frequency bands have been allocated for high-speed wireless transmission. Therefore, an ultra-wideband MMW PLL is required in a MMW wireless broadband transceiver to generate the required clock or local oscillator (LO) source. However, such an ultra-wideband PLL is limited by the lack of an ultra-wide tuning range VCO and a wide input locking range ILFD. Therefore, in this dissertation, an ultra-wide tuning range VCO is developed using the topology of a ring-based triple-push VCO and advanced CMOS technology. The analytical and design considerations of this VCO are described in detail. The experimental results demonstrate the ultra-wide tuning range, the widest reported to date. Although the phase noise of this VCO is mediocre, this wide tuning range facilitates the realization of an ultra-wideband PLL.
In addition to an ultra-wide tuning range VCO, a wide input locking range ILFD is also necessary. ILFDs can be classified into two types: LC-type and ring-type. For lower operating frequencies, an inductor-less ring-type (divide-by-four) D4 ILFD is developed using the in-phase injection method. The analytical and design considerations are described. The experimental results demonstrate that this D4 ILFD achieves a wide input locking range. Although this ring-type D4 ILFD may not operate at very high frequencies, operating with a multi-push VCO, this ILFD may be the first-stage frequency divider (FD) in a MMW PLL for transmission applications.
For higher operating frequencies, LC-type V-band (50-75 GHz) and W-band (75-110 GHz) ILFDs are developed with a proposed dual-mixing technique. The voltage conversion gain is introduced and the formulas for the dual-mixing ILFD are derived to explain the wide input locking ranges. Design considerations and procedures are also described in detail. According to the design guidelines, the V-band (divide-by-two) D2 ILFD achieves an input locking of almost the full V-band without any tuning mechanism. This wide input locking range also facilitates the realization of an ultra-wideband PLL. Furthermore, the proposed W-band D4 ILFD solves the input locking range mismatch between the first-stage ILFD and the second-stage FD at considerably high operating frequencies. Although the W-band ILFD does not have as wide an input locking range as the V-band D2 ILFD, it has a sufficient input locking range as compared with prior arts.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/43615
Fulltext Rights: 有償授權
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
5.82 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved