Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41262
Title: 圖秩的研究
On the Rank of Graphs
Authors: Liang-Hao Huang
黃良豪
Advisor: 張鎮華,葉鴻國
Keyword: 最小秩,最大零維數,秩,
minimum rank,maximum nullity,rank,
Publication Year : 2009
Degree: 博士
Abstract: 給定圖 $G$ 和體 $F$,$G$ 佈於 $F$ 的最小秩 $mr^F(G)$是所有佈於 $F$ 可決定 $G$ 的對稱方陣中最小的秩。圖的最小秩問題是等價於圖的最大零維數 ($M^F(G)$) 問題。Barioli 等人 [1] 提出圖的參數 $Z(G)$ 作為 $M^F(G)$ 的上界,這篇論文中的目標是[1] 中提出的一個問題︰哪類的圖具有 $Z(G)=M^F(G)$ 的性質。
在第二章中,我們證明了如果 $G$ 是區塊圖,則$Z(G)=M^F(G)$。推廣了 [1] 中的結果。我們也證明了如果 $|F|= infty$ 且 $G$是單位區間圖,則$Z(G)=M^F(G)$。在第三章中,我們證明 $d$ 維的hypercube $Q_d$,$M^F(Q_d)$ 和所佈於的體 $F$ 是無關的,推廣了 [1] 中的結果。我們還提供幾類圖具有 $Z(G)=M^F(G)$ 的性質。在第四章中pp 我們提供幾類圖pp 具有特別形式的最優矩陣。在第五章中,我們研究 cograph 的秩,且回答 Royle [28]所提出的問題。對於 cograph 的秩,我們給予不同的方式證明。
The minimum rank problem is, for a given graph $G$ and a field $F$, to determine the smallest possible rank among all symmetric matrices over $F$ whose off-diagonal pattern of zero-nonzero entries is described by $G$. The solution to the minimum rank problem is equivalent to the determination of the maximum nullity $M^F(G)$ among the same family of matrices. Recently, in [1], a new graph parameter $Z(G)$, the zero forcing number, has been introduced as a technique to bound $M^F(G)$ from above.
At the end of the paper [1]} the authors posed the following attractive question: What is the class of graphs $G$ for which $Z(G)=M^F(G)$ for some field $F$? Our goal of this thesis is to investigate which graphs has the property $Z(G)=M^F(G)$ and to determine $M^F(G)$.
In Chapter 2, we show that if $G$ is a block-clique graph,
then $Z(G)=M^F(G)$. The assertion for block-clique graphs generalizes Proposition 3.23 of [1]. We also show that if $F$ is infinite and $G$ is a unit interval graph, then $Z(G)=M^F(G)$. In Chapter 3, we show that for the $d$-dimensional hypercube $Q_d$, $M^F(Q_d)$ is field independent. This result generalizes Theorem 3.1 of [1] We also give several families of product graphs $G$ which are demonstrated that $Z(G)=M^F(G)$ for every field $F$. In Chapter 4, we give several families of graphs $G$ which
has a universally optimal matrix and has field independent minimum rank. In Chapter 5, we answer a question posed by Royle [28] by giving an elementary short proof for a more general setting of this rank property of cographs.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41262
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
555.77 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved