Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鎮華,葉鴻國
dc.contributor.authorLiang-Hao Huangen
dc.contributor.author黃良豪zh_TW
dc.date.accessioned2021-06-15T00:14:56Z-
dc.date.available2010-01-01
dc.date.copyright2009-06-30
dc.date.issued2009
dc.date.submitted2009-06-23
dc.identifier.citation[1] AIM Minimum Rank–Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S. M. Cioab˘a, D. Cvetkovi´c, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha,W. So, D. Stevanovi´c, H. van der Holst, K. V. Meulen, A.W.Wehe), Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628-1648.
[2] American Institute of Mathematics. Minimum rank graph catalog. http://aimath.org/pastworkshops/matrixspectrum.html
[3] F. Barioli and S. M. Fallat, On the minimum rank of the join of graphs and decomposable graphs, Linear Algebra Appl. 421 (2007) 252–263.
[4] F. Barioli, S. M. Fallat, and L. Hogben, Computation of minimal rank and path cover number for graphs, Linear Algebra Appl. 392 (2004) 289-303.
[5] F. Barioli, S. M. Fallat, and L. Hogben, On the difference between the maximum multiplicity and path cover number for tree-like graphs, Linear Algebra Appl. 409 (2005) 13–31.
[6] F. Barioli, S. M. Fallat, and L. Hogben, A variant on the graph parameters of Colin de Verdi‘ere: Implications to the minimum rank of graphs, Electronic Journal of Linear Algebra 13 (2005) 387–404.
[7] W. Barrett, H. van der Holst and R. Loewy, Graphs whose minimal rank is two, Electronic Journal of Linear Algebra 11 (2004) 258–280.
[8] W. Barrett, H. van der Holst and R. Loewy, Graphs whose minimal rank is two: The finite fields case, Electronic Journal of Linear Algebra 14 (2005) 32–42.
[9] N. L. Biggs, Algebraic Graph Theory, Chambridge University Press, Cambridge, UK, second edition, 1994.
[10] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, Vol. 244, Springer-Verlag, New York, 2008.
[11] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, UK, 1991.
[12] N. L. Chenette, S. V. Droms, L. Hogben, R. Mikkelson, O. Pryporova, Minimum rank of a tree over an arbitrary field, Electronic Journal of Linear Algebra, 16 (2007) 183–186.
[13] D. G. Corneil, H. Lerchs, L. Stewart Burlingham, Complement reducible graphs, Discrete Applied Math. 3 (1981) 163–174.
[14] L. M. Dealba, J. Grout, L. Hogben, R. Mikkelson, and K. Rasmussen Universally optimal matrices and field independence of the minimum rank of a graph, preprint (2008) 12 pages.
[15] G. Ding and A. Kotlov, On minimal rank over finite fields, Electronic Journal of Linear Algebra 15 (2006) 210–214.
[16] S. M. Fallat and L. Hogben, The minimum rank of symmetric matrices described by a graph: A survey, Linear Algebra Appl. 426 (2007) 558-582.
[17] C. D. Godsil and G. F. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, Vol. 207, Springer-Verlag, New York, 2001.
[18] O. H. Hald, Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl. 14 (1976) 63-85.
[19] L. Hogben, Handbook of Linear Algebra, Chapman & Hall/CRC, 2006.
[20] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[21] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[22] L.-Y. Hsieh, On minimum rank matrices having prescribed graph, Ph.D. Thesis, University of Wisconsin-Madison, 2001.
[23] W. Imrich, S. Klavˇzar, Product Graphs: Structure and Recognition, John Wiley & Sons, 2000.
[24] C. R. Johnson and A. Leal Duarte, The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, Linear and Multilinear Algebra 46 (1999) 139–144.
[25] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Prindle, Weber, & Schmidt, Boston, 1964.
[26] P.M. Nylen, Minimum-rank matrices with prescribed graph, Linear Algebra Appl. 248 (1996) 303–316.
[27] F. S. Roberts, On the compatibility between a graph and a simple order, J. Comb. Theory 11 (1971) 28-38.
[28] G. F. Royle, The rank of a cograph, The Electronic Journal of Combinatorics 10 (2003), #N11.
[29] T. Sillke, Graphs with maximal rank,
http://www.mathematik.uni-bielefeld.de/∼sillke/PROBLEMS/cograph, 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/41262-
dc.description.abstract給定圖 $G$ 和體 $F$,$G$ 佈於 $F$ 的最小秩 $mr^F(G)$是所有佈於 $F$ 可決定 $G$ 的對稱方陣中最小的秩。圖的最小秩問題是等價於圖的最大零維數 ($M^F(G)$) 問題。Barioli 等人 [1] 提出圖的參數 $Z(G)$ 作為 $M^F(G)$ 的上界,這篇論文中的目標是[1] 中提出的一個問題︰哪類的圖具有 $Z(G)=M^F(G)$ 的性質。
在第二章中,我們證明了如果 $G$ 是區塊圖,則$Z(G)=M^F(G)$。推廣了 [1] 中的結果。我們也證明了如果 $|F|= infty$ 且 $G$是單位區間圖,則$Z(G)=M^F(G)$。在第三章中,我們證明 $d$ 維的hypercube $Q_d$,$M^F(Q_d)$ 和所佈於的體 $F$ 是無關的,推廣了 [1] 中的結果。我們還提供幾類圖具有 $Z(G)=M^F(G)$ 的性質。在第四章中pp 我們提供幾類圖pp 具有特別形式的最優矩陣。在第五章中,我們研究 cograph 的秩,且回答 Royle [28]所提出的問題。對於 cograph 的秩,我們給予不同的方式證明。
zh_TW
dc.description.abstractThe minimum rank problem is, for a given graph $G$ and a field $F$, to determine the smallest possible rank among all symmetric matrices over $F$ whose off-diagonal pattern of zero-nonzero entries is described by $G$. The solution to the minimum rank problem is equivalent to the determination of the maximum nullity $M^F(G)$ among the same family of matrices. Recently, in [1], a new graph parameter $Z(G)$, the zero forcing number, has been introduced as a technique to bound $M^F(G)$ from above.
At the end of the paper [1]} the authors posed the following attractive question: What is the class of graphs $G$ for which $Z(G)=M^F(G)$ for some field $F$? Our goal of this thesis is to investigate which graphs has the property $Z(G)=M^F(G)$ and to determine $M^F(G)$.
In Chapter 2, we show that if $G$ is a block-clique graph,
then $Z(G)=M^F(G)$. The assertion for block-clique graphs generalizes Proposition 3.23 of [1]. We also show that if $F$ is infinite and $G$ is a unit interval graph, then $Z(G)=M^F(G)$. In Chapter 3, we show that for the $d$-dimensional hypercube $Q_d$, $M^F(Q_d)$ is field independent. This result generalizes Theorem 3.1 of [1] We also give several families of product graphs $G$ which are demonstrated that $Z(G)=M^F(G)$ for every field $F$. In Chapter 4, we give several families of graphs $G$ which
has a universally optimal matrix and has field independent minimum rank. In Chapter 5, we answer a question posed by Royle [28] by giving an elementary short proof for a more general setting of this rank property of cographs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:14:56Z (GMT). No. of bitstreams: 1
ntu-98-D93221001-1.pdf: 569108 bytes, checksum: e853439df4bc4e133732be745643cb4c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents1 Introduction 1
1.1 Minimum rank of a graph . . . . . . . . . . . . 1
1.2 Basic definitions in graph theory . . . . . . . 3
1.3 Basic definitions in linear algebra . . . . . . . 4
1.4 Zero forcing number of a graph . . . . . . . . . 5
1.5 Results of this thesis . . . . . . . . . . . . . 7
2 The Minimum Rank of Graphs and Zero Forcing Sets 8
2.1 Introduction and preliminary results . . . . . . 8
2.2 The minimum rank of block-clique graphs . . . . 9
2.3 The minimum rank of unit interval graphs . . . 14
3 The Minimum Rank of Product Graphs 17
3.1 Cartesian product . . . . . . . . . . . . . . . 17
3.2 Direct product and strong product . . . . . . . 27
4 Universally Optimal Matrices 40
4.1 Introduction . . . . . . . . . . . . . . . . . 40
4.2 Main results . . . . . . . . . . . . . . . . . 42
5 The Rank of Cographs 55
5.1 Preliminary . . . . . . . . . . . . . . . . 55
5.2 Rank of a vertex-weighted cograph . . . . . . . 57
Bibliography 62
dc.language.isoen
dc.title圖秩的研究zh_TW
dc.titleOn the Rank of Graphsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee朱緒鼎,林強,黃華民,傅恆霖,顏經和
dc.subject.keyword最小秩,最大零維數,秩,zh_TW
dc.subject.keywordminimum rank,maximum nullity,rank,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2009-06-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
555.77 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved