Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4051
Title: 大腰圍平面圖的強邊著色數之精確值
On the precise value of the strong chromatic-index of a planar graph with a large girth
Authors: Guan-Huei Duh
杜冠慧
Advisor: 張鎮華(Gerard Jennhwa Chang)
Keyword: 強邊著色數,平面圖,腰圍,
Strong chromatic index,planar graph,girth,
Publication Year : 2016
Degree: 碩士
Abstract: 一個圖 $G$ 的 $k$-強邊著色指的是使得距離為二以內的邊都塗不同顏色的 $k$-邊著色;強邊著色數 $chi'_s(G)$ 則標明參數 $k$ 的最小可能。此概念最初是為了解決平地上設置廣播網路的問題,由 Fouquet 與 Jolivet 提出。對於任意圖 $G$,參數 $sigma(G)=max_{xyin E(G)}{deg(x)+deg(y)-1}$是強邊著色數的一個下界;且若 $G$ 是樹,則強邊著色數會到達此下界。另一方面,對於最大度數為 $Delta$ 的平面圖$G$,經由四色定理可以證得 $chi'_s(G)leq 4Delta+4$。更進一步,在各種腰圍與最大度數的條件下,平面圖的強邊著色數之上界分別有$4Delta$, $3Delta+5$, $3Delta+1$, $3Delta$ 和 $2Delta-1$ 等等優化。本篇論文說明當平面圖 $G$ 的腰圍夠大,且$sigma(G)geqDelta(G)+2$ 時,參數 $sigma(G)$ 就會恰好是此圖的強邊著色數。本結果反映出大腰圍的平面圖局部上有看似樹的結構。
A {em strong $k$-edge-coloring} of a graph $G$ is a mapping from the edge set $E(G)$ to ${1,2,ldots,k}$ such that every pair of distinct edges at distance at most two receive different colors. The {it strong chromatic index} $chi'_s(G)$ of a graph $G$ is the minimum $k$ for which $G$ has a strong $k$-edge-coloring. The concept of strong edge-coloring was introduced by Fouquet and Jolivet to model the channel assignment in some radio networks. Denote the parameter $sigma(G)=max_{xyin E(G)}{deg(x)+deg(y)-1}$. It is easy to see that $sigma(G) le chi'_s(G)$ for any graph $G$, and the equality holds when $G$ is a tree. For a planar graph $G$ of maximum degree $Delta$, it was proved that $chi'_s(G) le 4 Delta +4$ by using the Four Color Theorem. The upper bound was then reduced to $4Delta$, $3Delta+5$, $3Delta+1$, $3Delta$, $2Delta-1$ under different conditions for $Delta$ and the girth. In this paper, we prove that if the girth of a planar graph $G$ is large enough and $sigma(G)geq Delta(G)+2$, then the strong chromatic index of $G$ is precisely $sigma(G)$. This result reflects the intuition that a planar graph with a large girth locally looks like a tree.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4051
DOI: 10.6342/NTU201603561
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf411.45 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved