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摘要

一個圖 G的 k-強邊著色指的是使得距離為二以內的邊都塗不同顏

色的 k-邊著色；強邊著色數 χ′
s(G)則標明參數 k 的最小可能。此概念

最初是為了解決平地上設置廣播網路的問題，由 Fouquet與 Jolivet提

出。對於任意圖 G，參數 σ(G) = maxxy∈E(G){deg(x) + deg(y) − 1}是

強邊著色數的一個下界；且若 G是樹，則強邊著色數會到達此下界。

另一方面，對於最大度數為 ∆的平面圖 G，經由四色定理可以證得

χ′
s(G) ≤ 4∆ + 4。更進一步，在各種腰圍與最大度數的條件下，平面

圖的強邊著色數之上界分別有 4∆, 3∆ + 5, 3∆ + 1, 3∆和 2∆ − 1等等

優化。本篇論文說明當平面圖G的腰圍夠大，且 σ(G) ≥ ∆(G) + 2時，

參數 σ(G)就會恰好是此圖的強邊著色數。本結果反映出大腰圍的平面

圖局部上有看似樹的結構。

關鍵詞：強邊著色數、平面圖、腰圍。
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Abstract

A strong k-edge-coloring of a graph G is a mapping from the edge set

E(G) to {1, 2, . . . , k} such that every pair of distinct edges at distance at most

two receive different colors. The strong chromatic index χ′
s(G) of a graph G

is the minimum k for which G has a strong k-edge-coloring. The concept

of strong edge-coloring was introduced by Fouquet and Jolivet to model the

channel assignment in some radio networks. Denote the parameter σ(G) =

maxxy∈E(G){deg(x) + deg(y) − 1}. It is easy to see that σ(G) ≤ χ′
s(G) for

any graph G, and the equality holds when G is a tree. For a planar graph G

of maximum degree∆, it was proved that χ′
s(G) ≤ 4∆+4 by using the Four

Color Theorem. The upper boundwas then reduced to 4∆, 3∆+5, 3∆+1, 3∆,

2∆− 1 under different conditions for∆ and the girth. In this paper, we prove

that if the girth of a planar graph G is large enough and σ(G) ≥ ∆(G) + 2,

then the strong chromatic index of G is precisely σ(G). This result reflects

the intuition that a planar graph with a large girth locally looks like a tree.

Keywords: Strong chromatic index, planar graph, girth.
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1 Introduction

A strong k-edge-coloring of a graphG is a mapping from E(G) to {1, 2, . . . , k} such that

every pair of distinct edges at distance at most two receive different colors. It induces a

proper vertex coloring of L(G)2, the square of the line graph of G. The strong chromatic

index χ′
s(G) of G is the minimum k for which G has a strong k-edge-coloring. This

concept was introduced by Fouquet and Jolivet [19, 20] to model the channel assignment

in some radio networks. For more applications, see [4, 29, 32, 31, 24, 36].

A Vizing-type problem was asked by Erdős and Nešetřil, and further strengthened

by Faudree, Schelp, Gyárfás and Tuza to give an upper bound for χ′
s(G) in terms of the

maximum degree ∆ = ∆(G):

Conjecture 1 (Erdős and Nešetřil ’88 [16] ’89 [17], Faudree et al. ’90 [18]). If G is a

graph with maximum degree ∆, then χ′
s(G) ≤ ∆2 + ⌊∆

2
⌋2.

As demonstrated in [18], there are indeed some graphs reach the given upper bounds.

By a greedy algorithm, it can be easily seen that χ′
s(G) ≤ 2∆(∆ − 1) + 1. Molloy

and Reed [28] used a probabilistic method to show that χ′
s(G) ≤ 1.998∆2 for maximum

degree ∆ large enough. Recently, this upper bound was improved by Bruhn and Joos [8]

to 1.93∆2.

For small maximum degrees, the cases ∆ = 3 and 4 were studied. Andersen [1] and

Horák et al. [22] proved that χ′
s(G) ≤ 10 for∆(G) ≤ 3 independently; and Cranston [13]

showed that χ′
s(G) ≤ 22 when ∆(G) ≤ 4.

According to the examples in [18], the bound is tight for ∆ = 3, and the best we may

expect for ∆ = 4 is 20.

1
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The strong chromatic index of a few families of graphs are examined, such as cycles,

trees, d-dimensional cubes, chordal graphs, Kneser graphs, k-degenerate graphs, chordless

graphs and C4-free graphs, see [5, 12, 15, 18, 27, 39, 41]. As for Halin graphs, refer to

[10, 25, 26, 34, 35]. For the relation to various graph products, see [37].

Now we turn to planar graphs.

Faudree et al. used the Four Color Theorem [2, 3] to prove that planar graphs with

maximum degree∆ are strong (4∆+4)-edge-colorable [18]. By the same spirit, it can be

shown that K5-minor free graphs are strong (4∆ + 4)-edge-colorable. Moreover, every

planar graph G with girth at least 7 and ∆ ≥ 7 is strong 3∆-edge-colorable by applying

a strengthened version of Vizing’s Theorem on planar graphs [33, 38] and Grötzsch’s

theorem [21].

The following results are obtained by using a discharging method:

Theorem 2 (Hudák et al. ’14 [23]). If G is a planar graph with girth at least 7, then

χ′
s(G) ≤ 3∆(G).

Theorem 3 (Bensmail et al. ’14 [6]). If G is a planar graph with girth at least 6, then

χ′
s(G) ≤ 3∆(G) + 1.

Theorem 4 (Bensmail et al. ’14 [6]). If G is a planar graph with girth at least 5 or maxi-

mum degree at least 7, then χ′
s(G) ≤ 4∆(G).

It is also interesting to see the asymptotic behavior of strong chromatic index when the

girth is large enough.

Theorem 5 (Borodin and Ivanova ’13 [7]). If G is a planar graph with maximum degree

∆ ≥ 3 and girth at least 40⌊∆
2
⌋+ 1, then χ′

s(G) ≤ 2∆− 1.

Theorem 6 (Chang et al. ’14 [11]). If G is a planar graph with maximum degree ∆ ≥ 4

and girth at least 10∆ + 46, then χ′
s(G) ≤ 2∆− 1.

Theorem 7 (Wang and Zhao ’15 [40]). If G is a planar graph with maximum degree

∆ ≥ 4 and girth at least 10∆− 4, then χ′
s(G) ≤ 2∆− 1.

2
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The concept of maximum average degree is also an indicator of the sparsity of a graph.

Graphs with small maximum average degrees are in relation to planar graphs with large

girths, as a folklore lemma that can be proved by Euler’s formula points out.

Lemma 8. A planar graph G with girth g has maximum average degree mad(G) < 2 +

4
g−2

.

Many results concerning planar graphs with large girths can be extended to more gen-

eral graphs with small maximum average degrees. Strong chromatic index is no exception.

Theorem 9 (Wang and Zhao ’15 [40]). Let G be a graph with maximum degree ∆ ≥ 4.

If the maximum average degree mad(G) < 2 + 1
3∆−2

, the even girth is at least 6 and the

odd girth is at least 2∆− 1, then χ′
s(G) ≤ 2∆− 1.

In terms of maximum degree ∆, the bound 2∆ − 1 is best possible. We seek for a

better parameter as a refinement. Define

σ(G) := max
xy∈E(G)

{deg(x) + deg(y)− 1}.

An antimatching is an edge set S ⊆ E(G) in which any two edges are at distance at

most 2, thus any strong edge-coloring assigns distinct colors on S. Notice that each color

set of a strong edge-coloring is an induced matching, and the intersection of an induced

matching and an antimatching contains at most one edge. The fact suggests a dual problem

to strong edge-coloring: finding a maximum antimatching ofG, whose size is denoted by

am(G). For any edge xy ∈ E(G), the edges incident with xy form an antimatching of

size deg(x) + deg(y)− 1. Together with the weak duality, this gives the inequality

χ′
s(G) ≥ am(G) ≥ σ(G).

By induction, we see that for any nontrivial tree T , χ′
s(T ) = σ(T ) attains the lower

bound [18]. Based on the intuition that a planar graph with large girth locally looks like a

tree, in this paper, we focus on this class of graphs. More precisely, we prove the following

main theorem:

3
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Theorem 10. If G is a planar graph with σ = σ(G) ≥ 5, σ ≥ ∆(G) + 2 and girth at

least 5σ + 16, then χ′
s(G) = σ.

We also make refinement on the girth constraint and gain a stronger result in Section 4.

The condition σ ≥ ∆(G)+2 is necessary as shown in the following example. Suppose

n ≥ 1 and d ≥ 2. Construct G3n+1,d from the cycle (x1, x2, . . . , x3n+1) by adding d − 2

leaves adjacent to each x3i for 1 ≤ i ≤ n. Then σ(G3n+1,d) = d + 1 < d + 2 =

∆(G3n+1,d) + 2. See Figure 1.1 for G3n+1,4.

x1

x2

x3

Figure 1.1: The graph G3n+1,4.

We claim that σ(G3n+1,d) < χ′
s(G3n+1,d). Suppose to the contrary that σ(G3n+1,d) =

χ′
s(G3n+1,d). For 1 ≤ i ≤ n, the σ − 1 edges incident to x3i, together with the edge

x3i−2x3i−1 (or x3i+1x3i+2) use all the σ colors, implying that x3i−2x3i−1 uses the same

color as x3i+1x3i+2, where x3n+2 = x1. Therefore, x1x2, x4x5, . . . , x3n+1x3n+2 all use the

same color, contradicting that x1x2 is adjacent to x3n+1x1 = x3n+1x3n+2.

However, we have a corollary to remedy the situation a bit:

Corollary 11. If G is a planar graph with σ = σ(G) ≥ 4, σ = ∆(G) + 1 and girth at

least 5σ + 21, then χ′
s(G) ≤ σ + 1.

Proof. There must be some vertex x ∈ V (G) of degree 2 and adjacent to another vertex

of maximum degree inG. We add a pendant edge at x such that the resulting graph G̃ has

σ(G̃) = σ+1 = ∆(G)+2 = ∆(G̃)+2. Now G̃ satisfies the requirements of Theorem 10.

Hence it is (σ + 1)-strong edge-colorable, and so is its subgraph G.

4



doi: 10.6342/NTU201603561

2 The proof of the main theorem

To prove the main theorem, we need two lemmas and a key lemma, Lemma 18, to be

verified in the next section.

The first lemma can be used to prove that any tree T has strong chromatic index σ(T )

by induction.

Lemma 12. Suppose x1x2 is a cut edge of a graphG, andGi is the component ofG−x1x2

containing xi joining the edge x1x2 for i = 1, 2. If for some integer k, deg(x1)+deg(x2)−

1 ≤ k and χ′
s(Gi) ≤ k for i = 1, 2, then χ′

s(G) ≤ k.

Proof. Choose a strong k-edge-coloring fi of Gi for i = 1, 2. Let Ei be the set of edges

incident with xi in Gi − x1x2 and Si = fi(Ei). Since deg(x1) + deg(x2) − 1 ≤ k,

we may assume S1 and S2 are disjoint and f1(x1x2) = f2(x1x2) is some element c ∈

{1, 2, . . . , k}\ (S1 ∪ S2). Then

f(e) =


f1(e), if e ∈ E(G1)− x1x2;

f2(e), if e ∈ E(G2)− x1x2;

c, if e = x1x2

is a strong k-edge-coloring of G.

The following lemma about planar graphs is also useful in the proof of the main theo-

rem. An ℓ-thread is an induced path of ℓ+ 2 vertices all of whose internal vertices are of

degree 2 in the full graph.

Lemma 13 (Nešetřil et al.’97 [30]). Any planar graph G with minimum degree at least 2

and with girth at least 5ℓ+ 1 contains an ℓ-thread.

5
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Proof. Contract all the vertices of degree 2 to obtain G′. Notice that G′ is a planar graph

which may have multi-edges and may be disconnected. Embed G′ = (V,E) in the plane

as P . Then Euler’s Theorem says that |V | − |E|+ |F | ≥ 2, where F is the set of faces of

P . IfG′ has girth larger than 5, we have 2|E| =
∑

f∈F deg(f) ≥ 6|F |. But thatG′ has no

vertices of degree 2 implies 2|E| =
∑

v∈V deg(v) ≥ 3|V |. Combining all these produces

a contradiction:

2 ≤ |V | − |E|+ |F | ≤ 2

3
|E| − |E|+ 1

3
|E| = 0.

HenceG′ has a cycle of length at most 5. The corresponding cycle inG has length at least

5ℓ+ 1. Thus one of these edges in G′ is contracted from ℓ vertices in G, and so G has the

required path.

These two lemmas, together with Lemma 18 in the next section, lead to the following

proof of the main theorem:

Proof of Theorem 10. Since the inequality χ′
s(G) ≥ σ is trivial, it suffices to show that

χ′
s(G) ≤ σ. That is, G admits a strong σ-edge-coloring φ. Suppose to the contrary that

there is a counterexample G with fewest number of non-leaf vertices.

Notice that any proper subgraph of G with fewer non-leaf vertices than G admits a

strong σ-edge coloring. This follows from theminimality ofG, unless the proper subgraph

G′ does not satisfy the condition σ(G′) ≥ ∆(G′) + 2. However, it implies that σ(G′) <

∆(G′) + 2 ≤ ∆(G) + 2 ≤ σ. The equality σ(G′) = ∆(G′) means G′ is a star, which

is obviously σ-strong edge-colorable. As for the case σ(G′) = ∆(G′) + 1, although

Corollary 11 is derived from this theorem, it is still valid to be used since the proof only

requires the graph G̃′, obtained by joining a leaf toG′, to be σ(G̃′)-strong edge-colorable,

which is true as there are indeed fewer non-leaf vertices in G̃′ than in G. So χ′
s(G

′) ≤

σ(G′) + 1 ≤ σ.

As a consequence, if G is not a star, then there is no non-leaf vertex x adjacent to

deg(x)−1 leaves. For otherwise, there is a cut edge xy, where y is not a leaf. By applying

Lemma 12 to G with the cut edge xy, we get a contradiction.

6
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Consider H = G− {x ∈ V (G) : deg(x) = 1}, which clearly has the same girth as G

since the deletion doesn’t break any cycle. And we have the minimum degree δ(H) ≥ 2,

for otherwise G has a vertex x adjacent to deg(x) − 1 leaves, which is impossible as

noted above. Lemma 13 claims that there is a path x0x1 . . . xℓ+1 with ℓ = σ + 3 and

degH(xi) = 2 for i = 1, 2, . . . , ℓ. Now letG′ be the subgraph obtained fromG by deleting

the leaf-neighbors of x1, x2, . . . , xℓ and the vertices x2, x3, . . . , xℓ−1. This subgraph has

fewer non-leaf vertices than G, so it admits a strong σ-edge-coloring φ1. Consider the

subgraph T ofG induced by x1, x2, . . . , xℓ and their neighbors, which is a caterpillar tree.

By Lemma 18 that will be proved in the next section, T admits a strong σ-edge-coloring

φ2 such that φ1 and φ2 coincides on the edges x0x1 and xℓxℓ+1; furthermore, the edges

incident to x0 and x1 all receive different colors, and so do the edges incident to xℓ and

xℓ+1. By gluing these two edge-colorings we construct a strong σ-edge-coloring ofG.

7
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3 The key lemma: caterpillar with edge

pre-coloring

The purpose of this section is to prove the key lemma, Lemma 18, in this thesis.

All the graphs in this section are caterpillar trees. Let di ≥ 2 for i = 1, 2, . . . , ℓ.

By T = Cat(d1, d2, . . . , dℓ) we mean a caterpillar tree with spine x0, x1, . . . , xℓ+1, whose

degrees are d0, d1, . . . , dℓ+1, where d0 = dℓ+1 = 1. Call ℓ the length of T and let Ei be the

edges incident with xi. See Figure 3.1 for Cat(5,3,2,4,5).

x0 x1 x2 x3 x4 x5 x6

E1

Figure 3.1: The caterpillar tree Cat(5,3,2,4,5).

For color sets C1 and C2, denote C1 − C2 := C1\C2 the difference of the two sets. If

C2 = {α} contains only one element, we also denote it by C1 − α.

Collect all the tuples (C;α0, C1, Cℓ, αℓ) as Pκ(T ), where the color sets C1, Cℓ ⊆ C

with |C1| = d1, |Cℓ| = dℓ, |C| = κ, and α0 ∈ C1, αℓ ∈ Cℓ. Fix κ ∈ N. For any

P = (C;α0, C1, Cℓ, αℓ) ∈ Pκ(T ), the set of all strong edge-colorings φ using the colors

in C and satisfying the following criterions is denoted by CT (P ):

φ(E1) = C1, φ(Eℓ) = Cℓ, φ(x0x1) = α0 and φ(xℓxℓ+1) = αℓ.

If CT (P ) is nonempty for any P ∈ Pκ(T ) with κ ≥ σ(T ), then T is said to be strong

κ-edge-colorable with two-sided pre-coloring.

8
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Lemma 14. If T = Cat(d1, d2, . . . , dℓ) is strong κ-edge-colorable with two-sided pre-

coloring, then T is strong κ′-edge-colorable with two-sided pre-coloring for any κ′ ≥ κ.

Proof. For anyP ′ = (C ′;α′
0, C

′
1, C

′
ℓ, α

′
ℓ) ∈ Pκ′(T ), we have to find a strong edge-coloring

in CT (P ′).

Case |C ′
1 ∪ C ′

ℓ| ≤ κ: Choose a κ-set C so that C ′
1 ∪ C ′

ℓ ⊆ C ⊆ C ′. By assumption,

there is a strong edge-coloring in CT (C;α′
0, C

′
1, C

′
ℓ, α

′
ℓ) ⊆ CT (P ′).

Case |C ′
1 ∪ C ′

ℓ| > κ: Choose a κ-set C so that C ′
1 ∪ {α′

ℓ} ⊆ C ⊆ C ′
1 ∪ C ′

ℓ, and a

dℓ-set Cℓ so that C ′
ℓ ∩ C ⊆ Cℓ ⊆ C. By assumption, there is a strong edge-coloring φ in

CT (C;α′
0, C

′
1, Cℓ, α

′
ℓ). Let the edges in Eℓ with color Cℓ − C ′

ℓ be E ′
ℓ. Notice C ′

ℓ − Cℓ and

C are disjoint, so the colors in C ′
ℓ − Cℓ are not appeared in φ. Hence we can change the

colors of E ′
ℓ to C ′

ℓ − Cℓ and obtain a strong edge-coloring in CT (P ′).

We now derive a series of properties regarding the strong edge-pre-colorability with

two-sided pre-coloring of a caterpillar tree and its certain subtrees.

Lemma 15. Suppose a caterpillar tree T̃ contains T as a subgraph, and both have the

same length. If T̃ is strong κ-edge-colorable with two-sided pre-coloring, then so is T .

Proof. Suppose (C;α0, C1, Cℓ, αℓ) ∈ Pκ(T ). We find (C;α0, C
′
1, C

′
ℓ, αℓ) ∈ Pκ(T̃ ) such

that C ′
1 ⊇ C1 and C ′

ℓ ⊇ Cℓ. The lemma follows that any φ′ ∈ CT̃ (C;α0, C
′
1, C

′
ℓ, αℓ) has a

restriction φ on T so that φ is a strong edge-coloring in CT (C;α0, C1, Cℓ, αℓ).

For T = Cat(d1, d2, . . . , dℓ), let T−1 be the subtree Cat(d1, d2, . . . , dℓ−1).

Lemma 16. For a caterpillar tree T = Cat(d1, d2, . . . , dℓ), if T−1 is strong κ-edge-

colorable with two-sided pre-coloring, where κ ≥ σ(T ), then so is T .

Proof. For any P = (C;α0, C1, Cℓ, αℓ) ∈ Pκ(T ), pick αℓ−1 ∈ Cℓ − αℓ and Cℓ−1 a dℓ−1-

subset of C with Cℓ−1 ∩ Cℓ = {αℓ−1}. Notice that Cℓ−1 can be chosen since dℓ−1 +

dℓ − 1 ≤ σ(T ) ≤ κ. By the assumption, T−1 admits a strong κ-edge-coloring φ ∈

CT−1(C;α0, C1, Cℓ−1, αℓ−1). Coloring the remaining edges with Cℓ − αℓ−1 so that xℓxℓ+1

has color αℓ results in a strong κ-edge-coloring in CT (P ).

9
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Hereafter, if necessary we reverse the order to view T = Cat(dℓ, dℓ−1, . . . , d1) so that

we can always assume σ(T−1) = σ(T ). Hence the requirement κ ≥ σ(T ) in Lemma 16

automatically holds.

For a caterpillar tree T , we define T ′ and IT as follows. Call a vertex xi σ-large if

di ≥ d∗ := ⌈σ+1
2
⌉. The value d∗ is critical in the sense that

1. If di + dj ≤ σ + 1, then either di or dj must be at most d∗.

2. If di + dj ≥ σ + 1, then either di or dj must be at least d∗.

Let S = {xi : i ∈ IT} be the set of all σ-large vertices, except that if there exist i < j

with di−1 < d∗, di = di+1 = . . . = dj = d∗ and dj+1 < d∗, we only take xi, xi+2, xi+4, . . .

till xj or xj−1, depending on the parity. Then S is a nonempty independent set. Consider

a new degree sequence d′1, d′2, . . . , d′ℓ where

d′i =


di − 1, if i ∈ IT ;

di, if i /∈ IT .

Then T ′ = Cat(d′1, d′2, . . . , d′ℓ) is a caterpillar tree isomorphic to a subgraph of T , with

σ(T ′) = σ(T )− 1 due to the criticalness of d∗ and the choice method of S.

It is straightforward to see that (T ′)−1 = (T−1)
′ = Cat(d′1, d′2, . . . , d′ℓ−1) by the choice

method of S, and we denote it by T ′
−1 for short.

Lemma 17. For T = Cat(d1, d2, . . . , dℓ), suppose σ = σ(T ) = σ(T−1) ≥ 6 and T ′
−1

is strong (σ − 1)-edge-colorable with two-sided pre-coloring, then T is strong σ-edge-

colorable with two-sided pre-coloring.

Proof. For any P = (C;α0, C1, Cℓ, αℓ) ∈ Pσ(T ), we must show that CT (P ) is nonempty.

Let I = IT . Our strategy is to search for a color β such that

β ∈ C1 if and only if 1 ∈ I; and β ∈ Cℓ if and only if ℓ ∈ I .

Suppose such a color β exists and β ̸= αℓ. By Lemma 16, T ′ admits a strong (σ−1)-edge

coloring in CT ′(C −β;α0, C1−β, Cℓ−β, αℓ). Coloring the remaining edges with β then

10
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yields the required strong κ-edge-coloring in CT (P ). Notice that S being an independent

set guarantees that the edges with color β form an induced matching. If it happens that β

coincides with αℓ, then we seek instead for strong-edge coloring in CT ′(C − β;α0, C1 −

β, Cℓ−β, α′
ℓ) for arbitrary α′

ℓ ∈ Cℓ−αℓ. We make use of the symmetry of pendant edges

incident with xℓ and still achieve the goal.

Sometimes there is no suitable β. We alternatively consider T−1. By finding appro-

priate dℓ−1-subset Cℓ−1 ⊆ C and αℓ−1 with Cℓ−1 ∩ Cℓ = {αℓ−1}, there will be a β such

that

β ∈ C1 if and only if 1 ∈ I; and β ∈ Cℓ−1 if and only if ℓ− 1 ∈ I .

Similarly, there is a strong edge-coloring in CT−1(C;α0, C1, Cℓ−1, αℓ−1), as T ′
−1 is strong

(σ−1)-edge-colorable with two-sided pre-coloring. Color the remaining edges withCℓ−

αℓ−1 so that xℓxℓ+1 has color αℓ, we gain a strong σ-edge-coloring in CT (P ).

We now prove the existence of β according to the following four cases.

Case 1. 1, ℓ ∈ I . In this case, C1 ∩ Cℓ is nonempty since

|C1 ∩ Cℓ| = |C1|+ |Cℓ| − |C1 ∪ Cℓ| ≥ 2d∗ − σ > 0.

Pick β to be any color in the intersection.

Case 2. 1 ∈ I but ℓ /∈ I . If C1 − Cℓ is nonempty, then pick β to be any color in

the difference. Otherwise, 1 ∈ I and ℓ /∈ I imply d1 ≥ d∗ ≥ dℓ. On the other hand,

C1 −Cℓ = ∅ implies d1 ≤ dℓ. Thus the situation that C1 −Cℓ is empty occurs only when

d1 = dℓ = d∗ and C1 = Cℓ. We consider the subtree T−1. Choose αℓ−1 to be any color in

Cℓ − αℓ. Let Cℓ−1 be αℓ−1 together with any (dℓ−1 − 1)-subset in C − Cℓ.

Since dℓ = d∗ but ℓ /∈ I , it is the case that ℓ− 1 ∈ I and dℓ−1 = d∗. Pick β = αℓ−1.

Case 3. ℓ ∈ I but 1 /∈ I . If Cℓ − C1 is nonempty, then let β be any color in the

difference. Otherwise, d1 = dℓ = d∗ and C1 = Cℓ. But d1 = d∗ implies 1 ∈ I , a

contradiction.

Case 4. 1, ℓ /∈ I . If C − (C1 ∪ Cℓ) is nonempty, then pick β to be any color in the

difference set. Now, suppose C = C1 ∪ Cℓ. We consider the subtree T−1.

11
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First estimate the size

|Cℓ − C1| = |Cℓ ∪ C1| − |C1| ≥ σ − d∗ ≥ d∗ − 2 ≥ 2,

where d∗ ≥ 4 since σ ≥ 6. Pick αℓ−1 to be any color in Cℓ−C1−αℓ. Let Cℓ−1 be a color

set such that |Cℓ−1| = dℓ−1 and Cℓ−1 ∩ Cℓ = {αℓ−1}.

When ℓ− 1 ∈ I , pick β = αℓ−1. Otherwise, let β be chosen fromCℓ−C1−αℓ−1.

Now we are ready to prove the key lemma.

Lemma 18. Suppose T = Cat(d1, d2, . . . , dℓ) is a nice caterpillar tree, i.e. it satisfies

σ = σ(T ) ≥ 5, ℓ ≥ σ + 3 and σ ≥ ∆(T ) + 2.

For any κ ≥ σ(T ), any color sets C1, Cℓ ⊆ C with |C| = κ, |C1| = d1, |Cℓ| = dℓ, and

any two colors α0 ∈ C1, αℓ ∈ Cℓ, there is a strong σ-edge coloring φ using the colors in

C such that φ(E1) = C1, φ(Eℓ) = Cℓ and φ(x0x1) = α0, φ(xℓxℓ+1) = αℓ. That is, T is

strong κ-edge-colorable with two-sided pre-coloring for any κ ≥ σ.

Proof. We prove the lemma by induction on σ = σ(T ). Recall that we always assume the

condition σ(T−1) = σ(T ) holds. By Lemmas 14 and 16, it suffices to consider the case

κ = σ and ℓ = σ + 3.

If T is nice and σ ≥ 6, then T ′
−1 is also a nice caterpillar tree: The first two conditions

remain since σ(T ′
−1) = σ(T ′) = σ(T ) − 1. The third one σ(T ′

−1) ≥ ∆(T ′
−1) + 2 fails

only when σ(T ) = σ(T ′
−1) + 1 ≤ ∆(T ′

−1) + 2 ≤ ∆(T ) + 2 and so∆(T ′) = ∆(T ). Since

∆(T ) ≥ d∗, in this case,∆(T ) = d∗ ≥ 4 and there is at least a pair of consecutive vertices

with di = di+1 = d∗. Then σ(T ′
−1) = σ(T )−1 = 2∆(T )−2 ≥ ∆(T )+2 ≥ ∆(T ′

−1)+2.

By Lemma 17, we only have to discuss the base cases σ = 5 and ℓ = 8. We may

assume all degrees di = 3 since σ ≥ ∆ + 2. Also assume C1 = {1, 2, 3} and α0 = 1.

Depending on C1 ∩ C8 and whether α8 = α0 or not, by symmetry we color T according

to φ shown in Table 3.1, where αi = φ(xixi+1) and Ĉi = φ(Ci)−φ(xi−1xi)−φ(xixi+1).

Or we can solve this case by the argument in [7] or the odd graph method in [11, 40].

12
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α0 Ĉ1 α1 Ĉ2 α2 Ĉ3 α3 Ĉ4 α4 Ĉ5 α5 Ĉ6 α6 Ĉ7 α7 Ĉ8 α8

1 {3} 2 {4} 5 {1} 3 {4} 2 {5} 1 {3} 4 {5} 2 {1} 3
1 {3} 2 {4} 5 {1} 3 {4} 2 {5} 1 {3} 4 {5} 2 {3} 1
1 {2} 3 {5} 4 {1} 2 {5} 3 {1} 4 {2} 5 {1} 3 {4} 2
1 {2} 3 {5} 4 {1} 2 {5} 3 {1} 4 {2} 5 {1} 3 {2} 4
1 {3} 2 {4} 5 {1} 3 {4} 2 {5} 1 {4} 3 {5} 2 {4} 1
1 {3} 2 {4} 5 {1} 3 {4} 2 {5} 1 {4} 3 {5} 2 {1} 4
1 {3} 2 {4} 5 {1} 3 {2} 4 {5} 1 {2} 3 {5} 4 {1} 2
1 {3} 2 {4} 5 {1} 3 {4} 2 {5} 1 {4} 3 {2} 5 {4} 1
1 {3} 2 {4} 5 {1} 3 {4} 2 {5} 1 {4} 3 {2} 5 {1} 4
1 {3} 2 {4} 5 {1} 3 {2} 4 {1} 5 {2} 3 {1} 4 {5} 2
1 {3} 2 {4} 5 {1} 3 {2} 4 {1} 5 {2} 3 {1} 4 {2} 5

Table 3.1: The 5-strong edge-colorings of T for σ = 5 with ℓ = 8.
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4 Refinement of the key lemma and its

consequences

We now discuss the optimality of Lemma 18. If we take more care about the base cases,

there would be a refinement:

Lemma 19. Suppose T is a caterpillar tree of length ℓ satisfying

σ = σ(T ) ≥ 5, ℓ ≥ ℓσ and σ ≥ ∆(T ) + 2,

where

ℓσ =


8, if σ = 5;

7, if σ = 6;

σ, if σ ≥ 7.

Then T is strong κ-edge-colorable with two-sided pre-coloring for any κ ≥ σ.

Proof. Similar to Lemma 18, we only need to consider the base cases.

For σ = 6, we first consider the situation ℓ = 6. By Lemma 15 and the symme-

try, it suffices to discuss the caterpillar trees Cat(4, 3, 4, 3, 4, 3), Cat(4, 3, 4, 3, 3, 4), and

Cat(3, 4, 3, 3, 4, 3). We enumerate all the cases in Table 4.1 and Table 4.2 to show that the

first two are strong 6-edge-colorable with two-sided pre-coloring.

If the caterpillar tree T considered with σ = 6 and ℓ = 7 has T−1 = Cat(3, 4, 3, 3, 4, 3),

then T is a subtree of Cat(3, 4, 3, 3, 4, 3, 4). We can assume T = Cat(3, 4, 3, 3, 4, 3, 4) by

Lemma 15. Reverse the direction to see T as Cat(4, 3, 4, 3, 3, 4, 3). Then the subtree

T−1 = Cat(4, 3, 4, 3, 3, 4), which is strong 6-edge-colorable with two-sided pre-coloring.

14
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α0 Ĉ1 α1 Ĉ2 α2 Ĉ3 α3 Ĉ4 α4 Ĉ5 α5 Ĉ6 α6

1 {3 , 4} 2 {6} 5 {3 , 4} 1 {2} 6 {4 , 5} 3 {2} 1
1 {2 , 4} 3 {5} 6 {1 , 4} 2 {3} 5 {4 , 5} 1 {3} 2
1 {3 , 4} 2 {6} 5 {3 , 4} 1 {2} 6 {3 , 4} 5 {2} 1
1 {2 , 4} 3 {5} 6 {1 , 4} 2 {5} 3 {4 , 6} 1 {5} 2
1 {2 , 4} 3 {5} 6 {2 , 4} 1 {5} 3 {4 , 6} 2 {1} 5
1 {2 , 4} 3 {5} 6 {2 , 4} 1 {5} 3 {2 , 4} 6 {5} 1
1 {2 , 3} 4 {5} 6 {2 , 3} 1 {5} 4 {2 , 3} 6 {1} 5
1 {3 , 4} 2 {6} 5 {1 , 4} 3 {2} 6 {1 , 5} 4 {3} 2
1 {2 , 3} 4 {5} 6 {1 , 3} 2 {5} 4 {1 , 6} 3 {5} 2
1 {2 , 3} 4 {5} 6 {1 , 3} 2 {5} 4 {1 , 6} 3 {2} 5
1 {2 , 3} 4 {5} 6 {1 , 3} 2 {5} 4 {1 , 3} 6 {5} 2
1 {2 , 4} 3 {5} 6 {1 , 4} 2 {5} 3 {1 , 4} 6 {2} 5

Table 4.1: The 6-strong edge-colorings for T = Cat(4, 3, 4, 3, 4, 3).

α0 Ĉ1 α1 Ĉ2 α2 Ĉ3 α3 Ĉ4 α4 Ĉ5 α5 Ĉ6 α6

1 {2 , 4} 3 {5} 6 {2 , 4} 1 {3} 5 {6} 4 {2 , 3} 1
1 {3 , 4} 2 {5} 6 {1 , 4} 3 {2} 5 {6} 1 {3 , 4} 2
1 {3 , 4} 2 {5} 6 {1 , 3} 4 {5} 2 {6} 3 {4 , 5} 1
1 {2 , 4} 3 {6} 5 {1 , 2} 4 {3} 6 {2} 1 {4 , 5} 3
1 {2 , 4} 3 {6} 5 {1 , 2} 4 {3} 6 {2} 1 {3 , 4} 5
1 {3 , 4} 2 {5} 6 {3 , 4} 1 {5} 2 {3} 6 {4 , 5} 1
1 {3 , 4} 2 {6} 5 {3 , 4} 1 {6} 2 {3} 5 {1 , 6} 4
1 {3 , 4} 2 {6} 5 {1 , 3} 4 {6} 2 {3} 1 {4 , 6} 5
1 {3 , 4} 2 {6} 5 {1 , 4} 3 {2} 6 {1} 4 {3 , 5} 2
1 {2 , 4} 3 {6} 5 {1 , 2} 4 {3} 6 {1} 2 {3 , 4} 5
1 {3 , 4} 2 {5} 6 {1 , 4} 3 {5} 2 {1} 6 {4 , 5} 3
1 {3 , 4} 2 {6} 5 {1 , 3} 4 {6} 2 {1} 3 {4 , 6} 5

Table 4.2: The 6-strong edge-colorings for T = Cat(4, 3, 4, 3, 3, 4).

Hence all the caterpillar trees with σ = 6 and ℓ = 7 are strong 6-edge-colorable with

two-sided pre-coloring, as the other possibilities of T−1 can be dealt with by Lemma 16

directly.

For σ = 7 and ℓ = 7. It suffices to consider the caterpillar trees in Table 4.3.

All the trees T considered except Cat(3, 5, 3, 4, 4, 4, 4) and Cat(3, 5, 3, 4, 4, 3, 5) have

T ′
−1 being strong 6-edge-colorable with two-sided pre-coloring, so these T are strong 7-

edge-colorable with two-sided pre-coloring by Lemma 17.

If we see the caterpillar tree Cat(3, 5, 3, 4, 4, 4, 4) as T = Cat(4, 4, 4, 4, 3, 5, 3), then

T ′
−1 = Cat(3, 4, 3, 4, 3, 4) is strong 6-edge-colorable with two-sided pre-coloring. Sim-

ilarly, regard the caterpillar tree Cat(3, 5, 3, 4, 4, 3, 5) as T = Cat(5, 3, 4, 4, 3, 5, 3), then

T ′
−1 = Cat(4, 3, 3, 4, 3, 4) is strong 6-edge-colorablewith two-sided pre-coloring. So these
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T T ′
−1

Cat(3, 5, 3, 5, 3, 5, 3) Cat(3, 4, 3, 4, 3, 4)
Cat(5, 3, 5, 3, 3, 5, 3) Cat(4, 3, 4, 3, 3, 4)
Cat(5, 3, 3, 5, 3, 5, 3) Cat(4, 3, 3, 4, 3, 4)
Cat(5, 3, 5, 3, 5, 3, 5) Cat(4, 3, 4, 3, 4, 3)
Cat(5, 3, 3, 5, 3, 3, 5) Cat(4, 3, 3, 4, 3, 3)
Cat(3, 5, 3, 5, 3, 4, 4) Cat(3, 4, 3, 4, 3, 3)
Cat(5, 3, 5, 3, 4, 4, 4) Cat(4, 3, 4, 3, 3, 4)
Cat(3, 5, 3, 4, 4, 4, 4) Cat(3, 4, 3, 3, 4, 3)
Cat(5, 3, 4, 4, 4, 4, 4) Cat(4, 3, 3, 4, 3, 4)
Cat(4, 4, 4, 4, 4, 4, 4) Cat(3, 4, 3, 4, 3, 4)
Cat(3, 5, 3, 4, 4, 3, 5) Cat(3, 4, 3, 3, 4, 3)
Cat(5, 3, 4, 4, 4, 3, 5) Cat(4, 3, 3, 4, 3, 3)
Cat(4, 4, 3, 5, 3, 4, 4) Cat(3, 4, 3, 4, 3, 3)
Cat(4, 4, 3, 5, 3, 3, 5) Cat(3, 4, 3, 4, 3, 3)

Table 4.3: The caterpillar trees to be considered for σ = 7 and ℓ = 7.

two trees are also strong 7-edge-colorable with two-sided pre-coloring by Lemma 17, and

hence all the caterpillar trees considered with σ = 7 and ℓ = 7 are strong 7-edge-colorable

with two-sided pre-coloring.

The ℓσ here cannot be reduced: For σ ≥ 7, consider ℓ = σ − 1 and the caterpillar tree

T = Cat(d1, d2, . . . , dℓ), where d1, d3 · · · = ⌊σ+1
2
⌋ and d2, d4 · · · = ⌈σ+1

2
⌉.

If σ = 2d − 1 is an odd integer, let P = ([1, σ]; 1, [1, d], [1, d], 1) ∈ Pσ(T ). Suppose

there is some φ ∈ CT (P ). Let Ci = φ(Ei). Then |Ci+2 − Ci| = 1 for i = 1, 2, . . . , ℓ− 2.

So

|Cℓ − C2| ≤ |Cℓ − Cℓ−2|+ |Cℓ−2 − Cℓ−4|+ · · ·+ |C4 − C2| ≤ d− 2.

However, C1 = Cℓ implies |Cℓ − C2| = d− 1, a contradiction.

If σ = 2d− 2 is an even integer, let P = ([1, σ]; 1, [1, d− 1], [d, 2d− 2], d) ∈ Pσ(T ).

Suppose there is some φ ∈ CT (P ). Let Ci = φ(Ei). Again |Ci+2 − Ci| = 1 for i =

1, 2, . . . , ℓ− 2. Similarly, d− 1 = |Cℓ − C1| ≤ d− 2, a contradiction.

For σ = 6, let T = Cat(3, 4, 3, 3, 4, 3) and P = ([1, 6]; 1, {1, 2, 3}, {4, 5, 6}, 6) ∈

Pσ(T ). Suppose there is some φ ∈ CT (P ). Let Ci = φ(Ei). Then φ(x3x4) ∈ {1, 2, 3}

since C1 ∪ C2 = C2 ∪ C3 = [1, 6]. Similarly, φ(x3x4) ∈ {4, 5, 6} since C4 ∪ C5 =

C5 ∪ C6 = [1, 6]. A contradiction follows.

Exploiting Lemma 19, the main Theorem 10 can be strengthened to:
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Theorem 20. If G is a planar graph with σ = σ(G) ≥ 5, σ ≥ ∆(G) + 2 and girth at

least gσ, where

gσ =


41, if σ = 5;

36, if σ = 6;

5σ + 1, if σ ≥ 7,

then χ′
s(G) = σ.

If we take off the condition σ ≥ ∆+2 in Theorem 20, a weaker result can be obtained

by using the following corollary of Lemma 19 in the proof of the main Theorem 10.

Corollary 21. Suppose T is a caterpillar tree of length ℓ satisfying

σ = σ(T ) ≥ 4 and ℓ ≥ ℓσ+1,

where

ℓσ+1 =


8, if σ + 1 = 5;

7, if σ + 1 = 6;

σ + 1, if σ + 1 ≥ 8.

Then T is strong κ-edge-colorable with two-sided pre-coloring for any κ ≥ σ + 1.

Proof. Add pendant edges at some vertices of T with degree δ(T ) such that the resulting

graph T̃ has σ(T̃ ) = σ(T ) + 1 and σ(T̃ ) ≥ ∆(T̃ ) + 2. So T̃ satisfies the requirements of

Lemma 19, and hence it is strong κ-edge-colorable with two-sided pre-coloring for any

κ ≥ σ(T̃ ) = σ(T ) + 1. The corollary then follows from Lemma 15.

Theorem 22. If G is a planar graph with σ = σ(G) ≥ 4 and girth at least gσ+1, where

gσ+1 =


41, if σ + 1 = 5;

36, if σ + 1 = 6, 7;

5σ + 6, if σ + 1 ≥ 8,

then σ ≤ χ′
s(G) ≤ σ + 1.
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5 Consequences concerning the

maximum average degree

The following lemma is a direct consequence of Proposition 2.2 in [14].

Lemma 23 (Cranston and West ’13 [14]). Suppose the connected graph G is not a cycle.

If G has minimum degree at least 2 and average degree 2|E|
|V | < 2 + 2

3ℓ−1
, then G contains

an ℓ-thread.

A Cn-jellyfish is a graph by adding pendant edges at the vertices of Cn. In [9], it is

shown that

Proposition 24 (Chang et al.’15 [9]). If G is a Cn-jellyfish of m edges with σ(G) ≥ 4,

then χ′
s(G) =



m, if n = 3;

σ(G) + 1, if n = 4;

⌈ m
⌊n/2⌋⌉, otherwise, if n is odd with all deg(vi) = d but (n, d) ̸= (7, 3),

or with ⌈ m
⌊n/2⌋⌉ ≥ σ(G) + 1;

σ(G) + 1, otherwise, if (n, d) = (7, 3) with all deg(vi) = d,

or n ̸≡ 0 (mod 3) such that up to rotation deg(vi) = σ(G)− 1

for i ≡ 1 (mod 3) with 1 ≤ i ≤ 3⌊n
3
⌋ − 2,

or (n, σ(G)) = (10, 4) with deg(vi) = 3

for all odd or all even i;

σ(G), otherwise.

Adopting these results leads to a strengthening of Theorem 9.

18
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Theorem 25. If G is a graph with σ = σ(G) ≥ 5, σ ≥ ∆(G) + 2, odd girth at least g′σ,

even girth at least 6, and mad(G) < 2 + 2
3ℓσ−1

, where

g′σ =


9, if σ = 5;

σ, if σ > 5,

and ℓσ =


8, if σ = 5;

7, if σ = 6;

σ, if σ ≥ 7,

then χ′
s(G) = σ.

Proof. In the proof of Theorem 20, alternatively use Lemma 23 to find an ℓσ-thread inH .

It should be noticed the girth constraints exist merely to address the problem that H may

be a cycle. In this case, by Proposition 24, G still has strong chromatic index σ.

Indeed, suppose H = Cn and G is a Cn-jellyfish. The case n is even is trivial. If

σ ≥ σ(H) ≥ 5, n is odd and n ≥ g′σ ≥ σ, then

⌈ |E(G)|
⌊n
2
⌋

⌉
≤

⌈ n−1
2
(σ − 1) + σ+1

2
− 1

n−1
2

⌉
≤ σ.

Hence χ′
s(G) = σ.

Similarly, Theorem 22 can be modified correspondingly.

Theorem 26. If G is a graph with σ = σ(G) ≥ 4, odd girth at least σ+1
2
, and mad(G) <

2 + 2
3ℓσ+1−1

, where

ℓσ+1 =


8, if σ + 1 = 5;

7, if σ + 1 = 6;

σ + 1, if σ + 1 ≥ 7,

then σ ≤ χ′
s(G) ≤ σ + 1.
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