國立臺灣大學理學院數學系

碩士論文
Department of Mathematics College of Science

National Taiwan University Master Thesis

大腰圍平面圖的強邊著色數之精確值
On the precise value of the strong chromatic－index of a planar graph with a large girth

杜冠慧
Guan－Huei Duh

指導教授：張鎮華 博士
Advisor：Gerard Jennhwa Chang，Ph．D．

中華民國105年7月
July 2016

摘要

一個圖 G 的 k－強邊著色指的是使得距離為二以内的邊都塗不同顔色的 k－邊著色；強邊著色數 $\chi_{s}^{\prime}(G)$ 則標明参數 k 的最小可能。此概念最初是為了解決平地上設置廣播網路的問題，由 Fouquet 與 Jolivet 提出。對於任意圖 G ，參數 $\sigma(G)=\max _{x y \in E(G)}\{\operatorname{deg}(x)+\operatorname{deg}(y)-1\}$ 是強邊著色數的一個下界；且若 G 是樹，則強邊著色數會到達此下界。另一方面，對於最大度數為 Δ 的平面圖 G ，經由四色定理可以證得 $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$ 。更進一步，在各種腰圍與最大度數的條件下，平面圖的強邊著色數之上界分別有 $4 \Delta, 3 \Delta+5,3 \Delta+1,3 \Delta$ 和 $2 \Delta-1$ 等等優化。本篇論文說明當平面圖 G 的腰圍多大，且 $\sigma(G) \geq \Delta(G)+2$ 時，參數 $\sigma(G)$ 就會恰好是此圖的強邊著色數。本結果反映出大腰圍的平面圖局部上有看似樹的結構。

關鍵詞：強邊著色數，平面圖，腰圍。

Abstract

A strong k-edge-coloring of a graph G is a mapping from the edge set $E(G)$ to $\{1,2, \ldots, k\}$ such that every pair of distinct edges at distance at most two receive different colors. The strong chromatic index $\chi_{s}^{\prime}(G)$ of a graph G is the minimum k for which G has a strong k-edge-coloring. The concept of strong edge-coloring was introduced by Fouquet and Jolivet to model the channel assignment in some radio networks. Denote the parameter $\sigma(G)=$ $\max _{x y \in E(G)}\{\operatorname{deg}(x)+\operatorname{deg}(y)-1\}$. It is easy to see that $\sigma(G) \leq \chi_{s}^{\prime}(G)$ for any graph G, and the equality holds when G is a tree. For a planar graph G of maximum degree Δ, it was proved that $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$ by using the Four Color Theorem. The upper bound was then reduced to $4 \Delta, 3 \Delta+5,3 \Delta+1,3 \Delta$, $2 \Delta-1$ under different conditions for Δ and the girth. In this paper, we prove that if the girth of a planar graph G is large enough and $\sigma(G) \geq \Delta(G)+2$, then the strong chromatic index of G is precisely $\sigma(G)$. This result reflects the intuition that a planar graph with a large girth locally looks like a tree.

Keywords: Strong chromatic index, planar graph, girth.

Contents

摘要 i
Abstract ii
Contents iii
List of Figures iv
List of Tables v
1 Introduction 1
2 The proof of the main theorem 5
3 The key lemma: caterpillar with edge pre-coloring 8
4 Refinement of the key lemma and its consequences 14
5 Consequences concerning the maximum average degree 18
Bibliography 20

List of Figures

1.1 The graph $G_{3 n+1,4}$. 4
3.1 The caterpillar tree $\operatorname{Cat}(5,3,2,4,5)$. 8

List of Tables

3.1 The 5 -strong edge-colorings of T for $\sigma=5$ with $\ell=8$ 13
4.1 The 6 -strong edge-colorings for $T=\operatorname{Cat}(4,3,4,3,4,3)$. 15
4.2 The 6 -strong edge-colorings for $T=\operatorname{Cat}(4,3,4,3,3,4)$. 15
4.3 The caterpillar trees to be considered for $\sigma=7$ and $\ell=7$. 16

1 Introduction

A strong k-edge-coloring of a graph G is a mapping from $E(G)$ to $\{1,2, \ldots, k\}$ such that every pair of distinct edges at distance at most two receive different colors. It induces a proper vertex coloring of $L(G)^{2}$, the square of the line graph of G. The strong chromatic index $\chi_{s}^{\prime}(G)$ of G is the minimum k for which G has a strong k-edge-coloring. This concept was introduced by Fouquet and Jolivet [19, 20] to model the channel assignment in some radio networks. For more applications, see [4, 29, 32, 31, 24, 36].

A Vizing-type problem was asked by Erdős and Nešetrill, and further strengthened by Faudree, Schelp, Gyárfás and Tuza to give an upper bound for $\chi_{s}^{\prime}(G)$ in terms of the maximum degree $\Delta=\Delta(G)$:

Conjecture 1 (Erdős and Nešetřil '88 [16] '89 [17], Faudree et al. '90 [18]). If G is a graph with maximum degree Δ, then $\chi_{s}^{\prime}(G) \leq \Delta^{2}+\left\lfloor\frac{\Delta}{2}\right\rfloor^{2}$.

As demonstrated in [18], there are indeed some graphs reach the given upper bounds.
By a greedy algorithm, it can be easily seen that $\chi_{s}^{\prime}(G) \leq 2 \Delta(\Delta-1)+1$. Molloy and Reed [28] used a probabilistic method to show that $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ for maximum degree Δ large enough. Recently, this upper bound was improved by Bruhn and Joos [8] to $1.93 \Delta^{2}$.

For small maximum degrees, the cases $\Delta=3$ and 4 were studied. Andersen [1] and Horák et al. [22] proved that $\chi_{s}^{\prime}(G) \leq 10$ for $\Delta(G) \leq 3$ independently; and Cranston [13] showed that $\chi_{s}^{\prime}(G) \leq 22$ when $\Delta(G) \leq 4$.

According to the examples in [18], the bound is tight for $\Delta=3$, and the best we may expect for $\Delta=4$ is 20 .

The strong chromatic index of a few families of graphs are examined, such as cycles, trees, d-dimensional cubes, chordal graphs, Kneser graphs, k-degenerate graphs, chordless graphs and C_{4}-free graphs, see [5, 12, 15, 18, 27, 39, 41]. As for Halin graphs, refer to [10, 25, 26, 34, 35]. For the relation to various graph products, see [37].

Now we turn to planar graphs.
Faudree et al. used the Four Color Theorem [2,3] to prove that planar graphs with maximum degree Δ are strong $(4 \Delta+4)$-edge-colorable [18]. By the same spirit, it can be shown that K_{5}-minor free graphs are strong $(4 \Delta+4)$-edge-colorable. Moreover, every planar graph G with girth at least 7 and $\Delta \geq 7$ is strong 3Δ-edge-colorable by applying a strengthened version of Vizing's Theorem on planar graphs [33, 38] and Grötzsch's theorem [21].

The following results are obtained by using a discharging method:

Theorem 2 (Hudák et al. ' 14 [23]). If G is a planar graph with girth at least 7, then $\chi_{s}^{\prime}(G) \leq 3 \Delta(G)$.

Theorem 3 (Bensmail et al. '14 [6]). If G is a planar graph with girth at least 6 , then $\chi_{s}^{\prime}(G) \leq 3 \Delta(G)+1$.

Theorem 4 (Bensmail et al. '14 [6]). If G is a planar graph with girth at least 5 or maximum degree at least 7 , then $\chi_{s}^{\prime}(G) \leq 4 \Delta(G)$.

It is also interesting to see the asymptotic behavior of strong chromatic index when the girth is large enough.

Theorem 5 (Borodin and Ivanova '13 [7]). If G is a planar graph with maximum degree $\Delta \geq 3$ and girth at least $40\left\lfloor\frac{\Delta}{2}\right\rfloor+1$, then $\chi_{s}^{\prime}(G) \leq 2 \Delta-1$.

Theorem 6 (Chang et al. ' 14 [11]). If G is a planar graph with maximum degree $\Delta \geq 4$ and girth at least $10 \Delta+46$, then $\chi_{s}^{\prime}(G) \leq 2 \Delta-1$.

Theorem 7 (Wang and Zhao '15 [40]). If G is a planar graph with maximum degree $\Delta \geq 4$ and girth at least $10 \Delta-4$, then $\chi_{s}^{\prime}(G) \leq 2 \Delta-1$.

The concept of maximum average degree is also an indicator of the sparsity of a graph. Graphs with small maximum average degrees are in relation to planar graphs with large girths, as a folklore lemma that can be proved by Euler's formula points out.

Lemma 8. A planar graph G with girth g has maximum average degree $\operatorname{mad}(G)<2+$ $\frac{4}{g-2}$.

Many results concerning planar graphs with large girths can be extended to more general graphs with small maximum average degrees. Strong chromatic index is no exception.

Theorem 9 (Wang and Zhao '15 [40]). Let G be a graph with maximum degree $\Delta \geq 4$. If the maximum average degree $\operatorname{mad}(G)<2+\frac{1}{3 \Delta-2}$, the even girth is at least 6 and the odd girth is at least $2 \Delta-1$, then $\chi_{s}^{\prime}(G) \leq 2 \Delta-1$.

In terms of maximum degree Δ, the bound $2 \Delta-1$ is best possible. We seek for a better parameter as a refinement. Define

$$
\sigma(G):=\max _{x y \in E(G)}\{\operatorname{deg}(x)+\operatorname{deg}(y)-1\} .
$$

An antimatching is an edge set $S \subseteq E(G)$ in which any two edges are at distance at most 2 , thus any strong edge-coloring assigns distinct colors on S. Notice that each color set of a strong edge-coloring is an induced matching, and the intersection of an induced matching and an antimatching contains at most one edge. The fact suggests a dual problem to strong edge-coloring: finding a maximum antimatching of G, whose size is denoted by am (G). For any edge $x y \in E(G)$, the edges incident with $x y$ form an antimatching of size $\operatorname{deg}(x)+\operatorname{deg}(y)-1$. Together with the weak duality, this gives the inequality

$$
\chi_{s}^{\prime}(G) \geq \mathrm{am}(G) \geq \sigma(G)
$$

By induction, we see that for any nontrivial tree $T, \chi_{s}^{\prime}(T)=\sigma(T)$ attains the lower bound [18]. Based on the intuition that a planar graph with large girth locally looks like a tree, in this paper, we focus on this class of graphs. More precisely, we prove the following main theorem:

Theorem 10. If G is a planar graph with $\sigma=\sigma(G) \geq 5, \sigma \geq \Delta(G)+2$ and girth at least $5 \sigma+16$, then $\chi_{s}^{\prime}(G)=\sigma$.

We also make refinement on the girth constraint and gain a stronger result in Section 4.
The condition $\sigma \geq \Delta(G)+2$ is necessary as shown in the following example. Suppose $n \geq 1$ and $d \geq 2$. Construct $G_{3 n+1, d}$ from the cycle $\left(x_{1}, x_{2}, \ldots, x_{3 n+1}\right)$ by adding $d-2$ leaves adjacent to each $x_{3 i}$ for $1 \leq i \leq n$. Then $\sigma\left(G_{3 n+1, d}\right)=d+1<d+2=$ $\Delta\left(G_{3 n+1, d}\right)+2$. See Figure 1.1 for $G_{3 n+1,4}$.

Figure 1.1: The graph $G_{3 n+1,4}$.

We claim that $\sigma\left(G_{3 n+1, d}\right)<\chi_{s}^{\prime}\left(G_{3 n+1, d}\right)$. Suppose to the contrary that $\sigma\left(G_{3 n+1, d}\right)=$ $\chi_{s}^{\prime}\left(G_{3 n+1, d}\right)$. For $1 \leq i \leq n$, the $\sigma-1$ edges incident to $x_{3 i}$, together with the edge $x_{3 i-2} x_{3 i-1}$ (or $x_{3 i+1} x_{3 i+2}$) use all the σ colors, implying that $x_{3 i-2} x_{3 i-1}$ uses the same color as $x_{3 i+1} x_{3 i+2}$, where $x_{3 n+2}=x_{1}$. Therefore, $x_{1} x_{2}, x_{4} x_{5}, \ldots, x_{3 n+1} x_{3 n+2}$ all use the same color, contradicting that $x_{1} x_{2}$ is adjacent to $x_{3 n+1} x_{1}=x_{3 n+1} x_{3 n+2}$.

However, we have a corollary to remedy the situation a bit:

Corollary 11. If G is a planar graph with $\sigma=\sigma(G) \geq 4, \sigma=\Delta(G)+1$ and girth at least $5 \sigma+21$, then $\chi_{s}^{\prime}(G) \leq \sigma+1$.

Proof. There must be some vertex $x \in V(G)$ of degree 2 and adjacent to another vertex of maximum degree in G. We add a pendant edge at x such that the resulting graph \widetilde{G} has $\sigma(\widetilde{G})=\sigma+1=\Delta(G)+2=\Delta(\widetilde{G})+2$. Now \widetilde{G} satisfies the requirements of Theorem 10. Hence it is $(\sigma+1)$-strong edge-colorable, and so is its subgraph G.

2 The proof of the main theorem

To prove the main theorem, we need two lemmas and a key lemma, Lemma 18, to be verified in the next section.

The first lemma can be used to prove that any tree T has strong chromatic index $\sigma(T)$ by induction.

Lemma 12. Suppose $x_{1} x_{2}$ is a cut edge of a graph G, and G_{i} is the component of $G-x_{1} x_{2}$ containing x_{i} joining the edge $x_{1} x_{2}$ for $i=1,2$. If for some integer $k, \operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right)-$ $1 \leq k$ and $\chi_{s}^{\prime}\left(G_{i}\right) \leq k$ for $i=1,2$, then $\chi_{s}^{\prime}(G) \leq k$.

Proof. Choose a strong k-edge-coloring f_{i} of G_{i} for $i=1,2$. Let E_{i} be the set of edges incident with x_{i} in $G_{i}-x_{1} x_{2}$ and $S_{i}=f_{i}\left(E_{i}\right)$. Since $\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right)-1 \leq k$, we may assume S_{1} and S_{2} are disjoint and $f_{1}\left(x_{1} x_{2}\right)=f_{2}\left(x_{1} x_{2}\right)$ is some element $c \in$ $\{1,2, \ldots, k\} \backslash\left(S_{1} \cup S_{2}\right)$. Then

$$
f(e)= \begin{cases}f_{1}(e), & \text { if } e \in E\left(G_{1}\right)-x_{1} x_{2} \\ f_{2}(e), & \text { if } e \in E\left(G_{2}\right)-x_{1} x_{2} \\ c, & \text { if } e=x_{1} x_{2}\end{cases}
$$

is a strong k-edge-coloring of G.

The following lemma about planar graphs is also useful in the proof of the main theorem. An ℓ-thread is an induced path of $\ell+2$ vertices all of whose internal vertices are of degree 2 in the full graph.

Lemma 13 (Nešetřil et al.'97 [30]). Any planar graph G with minimum degree at least 2 and with girth at least $5 \ell+1$ contains an ℓ-thread.

Proof. Contract all the vertices of degree 2 to obtain G^{\prime}. Notice that G^{\prime} is a planar graph which may have multi-edges and may be disconnected. Embed $G^{\prime}=(V, E)$ in the plane as P. Then Euler's Theorem says that $|V|-|E|+|F| \geq 2$, where F is the set of faces of P. If G^{\prime} has girth larger than 5 , we have $2|E|=\sum_{f \in F} \operatorname{deg}(f) \geq 6|F|$. But that G^{\prime} has no vertices of degree 2 implies $2|E|=\sum_{v \in V} \operatorname{deg}(v) \geq 3|V|$. Combining all these produces a contradiction:

$$
2 \leq|V|-|E|+|F| \leq \frac{2}{3}|E|-|E|+\frac{1}{3}|E|=0 .
$$

Hence G^{\prime} has a cycle of length at most 5 . The corresponding cycle in G has length at least $5 \ell+1$. Thus one of these edges in G^{\prime} is contracted from ℓ vertices in G, and so G has the required path.

These two lemmas, together with Lemma 18 in the next section, lead to the following proof of the main theorem:

Proof of Theorem 10. Since the inequality $\chi_{s}^{\prime}(G) \geq \sigma$ is trivial, it suffices to show that $\chi_{s}^{\prime}(G) \leq \sigma$. That is, G admits a strong σ-edge-coloring φ. Suppose to the contrary that there is a counterexample G with fewest number of non-leaf vertices.

Notice that any proper subgraph of G with fewer non-leaf vertices than G admits a strong σ-edge coloring. This follows from the minimality of G, unless the proper subgraph G^{\prime} does not satisfy the condition $\sigma\left(G^{\prime}\right) \geq \Delta\left(G^{\prime}\right)+2$. However, it implies that $\sigma\left(G^{\prime}\right)<$ $\Delta\left(G^{\prime}\right)+2 \leq \Delta(G)+2 \leq \sigma$. The equality $\sigma\left(G^{\prime}\right)=\Delta\left(G^{\prime}\right)$ means G^{\prime} is a star, which is obviously σ-strong edge-colorable. As for the case $\sigma\left(G^{\prime}\right)=\Delta\left(G^{\prime}\right)+1$, although Corollary 11 is derived from this theorem, it is still valid to be used since the proof only requires the graph $\widetilde{G^{\prime}}$, obtained by joining a leaf to G^{\prime}, to be $\sigma\left(\widetilde{G^{\prime}}\right)$-strong edge-colorable, which is true as there are indeed fewer non-leaf vertices in $\widetilde{G^{\prime}}$ than in G. So $\chi_{s}^{\prime}\left(G^{\prime}\right) \leq$ $\sigma\left(G^{\prime}\right)+1 \leq \sigma$.

As a consequence, if G is not a star, then there is no non-leaf vertex x adjacent to $\operatorname{deg}(x)-1$ leaves. For otherwise, there is a cut edge $x y$, where y is not a leaf. By applying Lemma 12 to G with the cut edge $x y$, we get a contradiction.

Consider $H=G-\{x \in V(G): \operatorname{deg}(x)=1\}$, which clearly has the same girth as G since the deletion doesn't break any cycle. And we have the minimum degree $\delta(H) \geq 2$, for otherwise G has a vertex x adjacent to $\operatorname{deg}(x)-1$ leaves, which is impossible as noted above. Lemma 13 claims that there is a path $x_{0} x_{1} \ldots x_{\ell+1}$ with $\ell=\sigma+3$ and $\operatorname{deg}_{H}\left(x_{i}\right)=2$ for $i=1,2, \ldots, \ell$. Now let G^{\prime} be the subgraph obtained from G by deleting the leaf-neighbors of $x_{1}, x_{2}, \ldots, x_{\ell}$ and the vertices $x_{2}, x_{3}, \ldots, x_{\ell-1}$. This subgraph has fewer non-leaf vertices than G, so it admits a strong σ-edge-coloring φ_{1}. Consider the subgraph T of G induced by $x_{1}, x_{2}, \ldots, x_{\ell}$ and their neighbors, which is a caterpillar tree. By Lemma 18 that will be proved in the next section, T admits a strong σ-edge-coloring φ_{2} such that φ_{1} and φ_{2} coincides on the edges $x_{0} x_{1}$ and $x_{\ell} x_{\ell+1}$; furthermore, the edges incident to x_{0} and x_{1} all receive different colors, and so do the edges incident to x_{ℓ} and $x_{\ell+1}$. By gluing these two edge-colorings we construct a strong σ-edge-coloring of G.

3 The key lemma: caterpillar with edge

pre-coloring

The purpose of this section is to prove the key lemma, Lemma 18, in this thesis.
All the graphs in this section are caterpillar trees. Let $d_{i} \geq 2$ for $i=1,2, \ldots, \ell$. By $T=\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$ we mean a caterpillar tree with spine $x_{0}, x_{1}, \ldots, x_{\ell+1}$, whose degrees are $d_{0}, d_{1}, \ldots, d_{\ell+1}$, where $d_{0}=d_{\ell+1}=1$. Call ℓ the length of T and let E_{i} be the edges incident with x_{i}. See Figure 3.1 for $\operatorname{Cat}(5,3,2,4,5)$.

Figure 3.1: The caterpillar tree $\operatorname{Cat}(5,3,2,4,5)$.

For color sets C_{1} and C_{2}, denote $C_{1}-C_{2}:=C_{1} \backslash C_{2}$ the difference of the two sets. If $C_{2}=\{\alpha\}$ contains only one element, we also denote it by $C_{1}-\alpha$.

Collect all the tuples $\left(C ; \alpha_{0}, C_{1}, C_{\ell}, \alpha_{\ell}\right)$ as $\mathcal{P}_{\kappa}(T)$, where the color sets $C_{1}, C_{\ell} \subseteq C$ with $\left|C_{1}\right|=d_{1},\left|C_{\ell}\right|=d_{\ell},|C|=\kappa$, and $\alpha_{0} \in C_{1}, \alpha_{\ell} \in C_{\ell}$. Fix $\kappa \in \mathbb{N}$. For any $P=\left(C ; \alpha_{0}, C_{1}, C_{\ell}, \alpha_{\ell}\right) \in \mathcal{P}_{\kappa}(T)$, the set of all strong edge-colorings φ using the colors in C and satisfying the following criterions is denoted by $\mathcal{C}_{T}(P)$:

$$
\varphi\left(E_{1}\right)=C_{1}, \quad \varphi\left(E_{\ell}\right)=C_{\ell}, \quad \varphi\left(x_{0} x_{1}\right)=\alpha_{0} \quad \text { and } \quad \varphi\left(x_{\ell} x_{\ell+1}\right)=\alpha_{\ell}
$$

If $\mathcal{C}_{T}(P)$ is nonempty for any $P \in \mathcal{P}_{\kappa}(T)$ with $\kappa \geq \sigma(T)$, then T is said to be strong κ-edge-colorable with two-sided pre-coloring.

Lemma 14. If $T=\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$ is strong κ-edge-colorable with two-sided precoloring, then T is strong κ^{\prime}-edge-colorable with two-sided pre-coloring for any $\kappa^{\prime} \geq \kappa$.

Proof. For any $P^{\prime}=\left(C^{\prime} ; \alpha_{0}^{\prime}, C_{1}^{\prime}, C_{\ell}^{\prime}, \alpha_{\ell}^{\prime}\right) \in \mathcal{P}_{\kappa^{\prime}}(T)$, we have to find a strong edge-coloring in $\mathcal{C}_{T}\left(P^{\prime}\right)$.

Case $\left|C_{1}^{\prime} \cup C_{\ell}^{\prime}\right| \leq \kappa$: Choose a κ-set C so that $C_{1}^{\prime} \cup C_{\ell}^{\prime} \subseteq C \subseteq C^{\prime}$. By assumption, there is a strong edge-coloring in $\mathcal{C}_{T}\left(C ; \alpha_{0}^{\prime}, C_{1}^{\prime}, C_{\ell}^{\prime}, \alpha_{\ell}^{\prime}\right) \subseteq \mathcal{C}_{T}\left(P^{\prime}\right)$.

Case $\left|C_{1}^{\prime} \cup C_{\ell}^{\prime}\right|>\kappa$: Choose a κ-set C so that $C_{1}^{\prime} \cup\left\{\alpha_{\ell}^{\prime}\right\} \subseteq C \subseteq C_{1}^{\prime} \cup C_{\ell}^{\prime}$, and a d_{ℓ}-set C_{ℓ} so that $C_{\ell}^{\prime} \cap C \subseteq C_{\ell} \subseteq C$. By assumption, there is a strong edge-coloring φ in $\mathcal{C}_{T}\left(C ; \alpha_{0}^{\prime}, C_{1}^{\prime}, C_{\ell}, \alpha_{\ell}^{\prime}\right)$. Let the edges in E_{ℓ} with color $C_{\ell}-C_{\ell}^{\prime}$ be E_{ℓ}^{\prime}. Notice $C_{\ell}^{\prime}-C_{\ell}$ and C are disjoint, so the colors in $C_{\ell}^{\prime}-C_{\ell}$ are not appeared in φ. Hence we can change the colors of E_{ℓ}^{\prime} to $C_{\ell}^{\prime}-C_{\ell}$ and obtain a strong edge-coloring in $\mathcal{C}_{T}\left(P^{\prime}\right)$.

We now derive a series of properties regarding the strong edge-pre-colorability with two-sided pre-coloring of a caterpillar tree and its certain subtrees.

Lemma 15. Suppose a caterpillar tree \widetilde{T} contains T as a subgraph, and both have the same length. If \widetilde{T} is strong κ-edge-colorable with two-sided pre-coloring, then so is T.

Proof. Suppose $\left(C ; \alpha_{0}, C_{1}, C_{\ell}, \alpha_{\ell}\right) \in \mathcal{P}_{\kappa}(T)$. We find $\left(C ; \alpha_{0}, C_{1}^{\prime}, C_{\ell}^{\prime}, \alpha_{\ell}\right) \in \mathcal{P}_{\kappa}(\widetilde{T})$ such that $C_{1}^{\prime} \supseteq C_{1}$ and $C_{\ell}^{\prime} \supseteq C_{\ell}$. The lemma follows that any $\varphi^{\prime} \in \mathcal{C}_{\widetilde{T}}\left(C ; \alpha_{0}, C_{1}^{\prime}, C_{\ell}^{\prime}, \alpha_{\ell}\right)$ has a restriction φ on T so that φ is a strong edge-coloring in $\mathcal{C}_{T}\left(C ; \alpha_{0}, C_{1}, C_{\ell}, \alpha_{\ell}\right)$.

For $T=\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$, let T_{-1} be the subtree $\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell-1}\right)$.

Lemma 16. For a caterpillar tree $T=\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$, if T_{-1} is strong κ-edgecolorable with two-sided pre-coloring, where $\kappa \geq \sigma(T)$, then so is T.

Proof. For any $P=\left(C ; \alpha_{0}, C_{1}, C_{\ell}, \alpha_{\ell}\right) \in \mathcal{P}_{\kappa}(T)$, pick $\alpha_{\ell-1} \in C_{\ell}-\alpha_{\ell}$ and $C_{\ell-1}$ a $d_{\ell-1^{-}}$ subset of C with $C_{\ell-1} \cap C_{\ell}=\left\{\alpha_{\ell-1}\right\}$. Notice that $C_{\ell-1}$ can be chosen since $d_{\ell-1}+$ $d_{\ell}-1 \leq \sigma(T) \leq \kappa$. By the assumption, T_{-1} admits a strong κ-edge-coloring $\varphi \in$ $\mathcal{C}_{T_{-1}}\left(C ; \alpha_{0}, C_{1}, C_{\ell-1}, \alpha_{\ell-1}\right)$. Coloring the remaining edges with $C_{\ell}-\alpha_{\ell-1}$ so that $x_{\ell} x_{\ell+1}$ has color α_{ℓ} results in a strong κ-edge-coloring in $\mathcal{C}_{T}(P)$.

Hereafter, if necessary we reverse the order to view $T=\operatorname{Cat}\left(d_{\ell}, d_{\ell-1}, \ldots, d_{1}\right)$ so that we can always assume $\sigma\left(T_{-1}\right)=\sigma(T)$. Hence the requirement $\kappa \geq \sigma(T)$ in Lemma 16 automatically holds.

For a caterpillar tree T, we define T^{\prime} and I_{T} as follows. Call a vertex $x_{i} \sigma$-large if $d_{i} \geq d^{*}:=\left\lceil\frac{\sigma+1}{2}\right\rceil$. The value d^{*} is critical in the sense that

1. If $d_{i}+d_{j} \leq \sigma+1$, then either d_{i} or d_{j} must be at most d^{*}.
2. If $d_{i}+d_{j} \geq \sigma+1$, then either d_{i} or d_{j} must be at least d^{*}.

Let $S=\left\{x_{i}: i \in I_{T}\right\}$ be the set of all σ-large vertices, except that if there exist $i<j$ with $d_{i-1}<d^{*}, d_{i}=d_{i+1}=\ldots=d_{j}=d^{*}$ and $d_{j+1}<d^{*}$, we only take $x_{i}, x_{i+2}, x_{i+4}, \ldots$ till x_{j} or x_{j-1}, depending on the parity. Then S is a nonempty independent set. Consider a new degree sequence $d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{\ell}^{\prime}$ where

$$
d_{i}^{\prime}= \begin{cases}d_{i}-1, & \text { if } i \in I_{T} \\ d_{i}, & \text { if } i \notin I_{T}\end{cases}
$$

Then $T^{\prime}=\operatorname{Cat}\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{\ell}^{\prime}\right)$ is a caterpillar tree isomorphic to a subgraph of T, with $\sigma\left(T^{\prime}\right)=\sigma(T)-1$ due to the criticalness of d^{*} and the choice method of S.

It is straightforward to see that $\left(T^{\prime}\right)_{-1}=\left(T_{-1}\right)^{\prime}=\operatorname{Cat}\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{\ell-1}^{\prime}\right)$ by the choice method of S, and we denote it by T_{-1}^{\prime} for short.

Lemma 17. For $T=\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$, suppose $\sigma=\sigma(T)=\sigma\left(T_{-1}\right) \geq 6$ and T_{-1}^{\prime} is strong ($\sigma-1$)-edge-colorable with two-sided pre-coloring, then T is strong σ-edgecolorable with two-sided pre-coloring.

Proof. For any $P=\left(C ; \alpha_{0}, C_{1}, C_{\ell}, \alpha_{\ell}\right) \in \mathcal{P}_{\sigma}(T)$, we must show that $\mathcal{C}_{T}(P)$ is nonempty.
Let $I=I_{T}$. Our strategy is to search for a color β such that

$$
\beta \in C_{1} \text { if and only if } 1 \in I \text {; and } \beta \in C_{\ell} \text { if and only if } \ell \in I .
$$

Suppose such a color β exists and $\beta \neq \alpha_{\ell}$. By Lemma 16, T^{\prime} admits a strong ($\sigma-1$)-edge coloring in $\mathcal{C}_{T^{\prime}}\left(C-\beta ; \alpha_{0}, C_{1}-\beta, C_{\ell}-\beta, \alpha_{\ell}\right)$. Coloring the remaining edges with β then
yields the required strong κ-edge-coloring in $\mathcal{C}_{T}(P)$. Notice that S being an independent set guarantees that the edges with color β form an induced matching. If it happens that β coincides with α_{ℓ}, then we seek instead for strong-edge coloring in $\mathcal{C}_{T^{\prime}}\left(C-\beta ; \alpha_{0}, C_{1}-\right.$ $\left.\beta, C_{\ell}-\beta, \alpha_{\ell}^{\prime}\right)$ for arbitrary $\alpha_{\ell}^{\prime} \in C_{\ell}-\alpha_{\ell}$. We make use of the symmetry of pendant edges incident with x_{ℓ} and still achieve the goal.

Sometimes there is no suitable β. We alternatively consider T_{-1}. By finding appropriate $d_{\ell-1}$-subset $C_{\ell-1} \subseteq C$ and $\alpha_{\ell-1}$ with $C_{\ell-1} \cap C_{\ell}=\left\{\alpha_{\ell-1}\right\}$, there will be a β such that

$$
\beta \in C_{1} \text { if and only if } 1 \in I ; \text { and } \beta \in C_{\ell-1} \text { if and only if } \ell-1 \in I .
$$

Similarly, there is a strong edge-coloring in $\mathcal{C}_{T_{-1}}\left(C ; \alpha_{0}, C_{1}, C_{\ell-1}, \alpha_{\ell-1}\right)$, as T_{-1}^{\prime} is strong ($\sigma-1$)-edge-colorable with two-sided pre-coloring. Color the remaining edges with $C_{\ell}-$ $\alpha_{\ell-1}$ so that $x_{\ell} x_{\ell+1}$ has color α_{ℓ}, we gain a strong σ-edge-coloring in $\mathcal{C}_{T}(P)$.

We now prove the existence of β according to the following four cases.
Case 1. $1, \ell \in I$. In this case, $C_{1} \cap C_{\ell}$ is nonempty since

$$
\left|C_{1} \cap C_{\ell}\right|=\left|C_{1}\right|+\left|C_{\ell}\right|-\left|C_{1} \cup C_{\ell}\right| \geq 2 d^{*}-\sigma>0 .
$$

Pick β to be any color in the intersection.
Case 2. $1 \in I$ but $\ell \notin I$. If $C_{1}-C_{\ell}$ is nonempty, then pick β to be any color in the difference. Otherwise, $1 \in I$ and $\ell \notin I$ imply $d_{1} \geq d^{*} \geq d_{\ell}$. On the other hand, $C_{1}-C_{\ell}=\emptyset$ implies $d_{1} \leq d_{\ell}$. Thus the situation that $C_{1}-C_{\ell}$ is empty occurs only when $d_{1}=d_{\ell}=d^{*}$ and $C_{1}=C_{\ell}$. We consider the subtree T_{-1}. Choose $\alpha_{\ell-1}$ to be any color in $C_{\ell}-\alpha_{\ell}$. Let $C_{\ell-1}$ be $\alpha_{\ell-1}$ together with any $\left(d_{\ell-1}-1\right)$-subset in $C-C_{\ell}$.

Since $d_{\ell}=d^{*}$ but $\ell \notin I$, it is the case that $\ell-1 \in I$ and $d_{\ell-1}=d^{*}$. Pick $\beta=\alpha_{\ell-1}$.
Case 3. $\ell \in I$ but $1 \notin I$. If $C_{\ell}-C_{1}$ is nonempty, then let β be any color in the difference. Otherwise, $d_{1}=d_{\ell}=d^{*}$ and $C_{1}=C_{\ell}$. But $d_{1}=d^{*}$ implies $1 \in I$, a contradiction.

Case 4. $1, \ell \notin I$. If $C-\left(C_{1} \cup C_{\ell}\right)$ is nonempty, then pick β to be any color in the difference set. Now, suppose $C=C_{1} \cup C_{\ell}$. We consider the subtree T_{-1}.

First estimate the size

$$
\left|C_{\ell}-C_{1}\right|=\left|C_{\ell} \cup C_{1}\right|-\left|C_{1}\right| \geq \sigma-d^{*} \geq d^{*}-2 \geq 2,
$$

where $d^{*} \geq 4$ since $\sigma \geq 6$. Pick $\alpha_{\ell-1}$ to be any color in $C_{\ell}-C_{1}-\alpha_{\ell}$. Let $C_{\ell-1}$ be a color set such that $\left|C_{\ell-1}\right|=d_{\ell-1}$ and $C_{\ell-1} \cap C_{\ell}=\left\{\alpha_{\ell-1}\right\}$.

When $\ell-1 \in I$, pick $\beta=\alpha_{\ell-1}$. Otherwise, let β be chosen from $C_{\ell}-C_{1}-\alpha_{\ell-1}$.

Now we are ready to prove the key lemma.

Lemma 18. Suppose $T=\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$ is a nice caterpillar tree, i.e. it satisfies

$$
\sigma=\sigma(T) \geq 5, \quad \ell \geq \sigma+3 \quad \text { and } \quad \sigma \geq \Delta(T)+2
$$

For any $\kappa \geq \sigma(T)$, any color sets $C_{1}, C_{\ell} \subseteq C$ with $|C|=\kappa,\left|C_{1}\right|=d_{1},\left|C_{\ell}\right|=d_{\ell}$, and any two colors $\alpha_{0} \in C_{1}, \alpha_{\ell} \in C_{\ell}$, there is a strong σ-edge coloring φ using the colors in C such that $\varphi\left(E_{1}\right)=C_{1}, \varphi\left(E_{\ell}\right)=C_{\ell}$ and $\varphi\left(x_{0} x_{1}\right)=\alpha_{0}, \varphi\left(x_{\ell} x_{\ell+1}\right)=\alpha_{\ell}$. That is, T is strong κ-edge-colorable with two-sided pre-coloring for any $\kappa \geq \sigma$.

Proof. We prove the lemma by induction on $\sigma=\sigma(T)$. Recall that we always assume the condition $\sigma\left(T_{-1}\right)=\sigma(T)$ holds. By Lemmas 14 and 16, it suffices to consider the case $\kappa=\sigma$ and $\ell=\sigma+3$.

If T is nice and $\sigma \geq 6$, then T_{-1}^{\prime} is also a nice caterpillar tree: The first two conditions remain since $\sigma\left(T_{-1}^{\prime}\right)=\sigma\left(T^{\prime}\right)=\sigma(T)-1$. The third one $\sigma\left(T_{-1}^{\prime}\right) \geq \Delta\left(T_{-1}^{\prime}\right)+2$ fails only when $\sigma(T)=\sigma\left(T_{-1}^{\prime}\right)+1 \leq \Delta\left(T_{-1}^{\prime}\right)+2 \leq \Delta(T)+2$ and so $\Delta\left(T^{\prime}\right)=\Delta(T)$. Since $\Delta(T) \geq d^{*}$, in this case, $\Delta(T)=d^{*} \geq 4$ and there is at least a pair of consecutive vertices with $d_{i}=d_{i+1}=d^{*}$. Then $\sigma\left(T_{-1}^{\prime}\right)=\sigma(T)-1=2 \Delta(T)-2 \geq \Delta(T)+2 \geq \Delta\left(T_{-1}^{\prime}\right)+2$.

By Lemma 17, we only have to discuss the base cases $\sigma=5$ and $\ell=8$. We may assume all degrees $d_{i}=3$ since $\sigma \geq \Delta+2$. Also assume $C_{1}=\{1,2,3\}$ and $\alpha_{0}=1$. Depending on $C_{1} \cap C_{8}$ and whether $\alpha_{8}=\alpha_{0}$ or not, by symmetry we color T according to φ shown in Table 3.1, where $\alpha_{i}=\varphi\left(x_{i} x_{i+1}\right)$ and $\widehat{C}_{i}=\varphi\left(C_{i}\right)-\varphi\left(x_{i-1} x_{i}\right)-\varphi\left(x_{i} x_{i+1}\right)$. Or we can solve this case by the argument in [7] or the odd graph method in [11, 40].

α_{0}	\widehat{C}_{1}	α_{1}	\widehat{C}_{2}	α_{2}	\widehat{C}_{3}	α_{3}	\widehat{C}_{4}	α_{4}	\widehat{C}_{5}	α_{5}	\widehat{C}_{6}	α_{6}	\widehat{C}_{7}	α_{7}	\widehat{C}_{8}	α_{8}
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{4\}$	2	$\{5\}$	1	$\{3\}$	4	$\{5\}$	2	$\{1\}$	3
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{4\}$	2	$\{5\}$	1	$\{3\}$	4	$\{5\}$	2	$\{3\}$	1
1	$\{2\}$	3	$\{5\}$	4	$\{1\}$	2	$\{5\}$	3	$\{1\}$	4	$\{2\}$	5	$\{1\}$	3	$\{4\}$	2
1	$\{2\}$	3	$\{5\}$	4	$\{1\}$	2	$\{5\}$	3	$\{1\}$	4	$\{2\}$	5	$\{1\}$	3	$\{2\}$	4
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{4\}$	2	$\{5\}$	1	$\{4\}$	3	$\{5\}$	2	$\{4\}$	1
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{4\}$	2	$\{5\}$	1	$\{4\}$	3	$\{5\}$	2	$\{1\}$	4
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{2\}$	4	$\{5\}$	1	$\{2\}$	3	$\{5\}$	4	$\{1\}$	2
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{4\}$	2	$\{5\}$	1	$\{4\}$	3	$\{2\}$	5	$\{4\}$	1
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{4\}$	2	$\{5\}$	1	$\{4\}$	3	$\{2\}$	5	$\{1\}$	4
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{2\}$	4	$\{1\}$	5	$\{2\}$	3	$\{1\}$	4	$\{5\}$	2
1	$\{3\}$	2	$\{4\}$	5	$\{1\}$	3	$\{2\}$	4	$\{1\}$	5	$\{2\}$	3	$\{1\}$	4	$\{2\}$	5

Table 3.1: The 5 -strong edge-colorings of T for $\sigma=5$ with $\ell=8$.

4 Refinement of the key lemma and its

consequences

We now discuss the optimality of Lemma 18. If we take more care about the base cases, there would be a refinement:

Lemma 19. Suppose T is a caterpillar tree of length ℓ satisfying

$$
\sigma=\sigma(T) \geq 5, \quad \ell \geq \ell_{\sigma} \quad \text { and } \quad \sigma \geq \Delta(T)+2
$$

where

$$
\ell_{\sigma}= \begin{cases}8, & \text { if } \sigma=5 \\ 7, & \text { if } \sigma=6 \\ \sigma, & \text { if } \sigma \geq 7\end{cases}
$$

Then T is strong κ-edge-colorable with two-sided pre-coloring for any $\kappa \geq \sigma$.

Proof. Similar to Lemma 18, we only need to consider the base cases.
For $\sigma=6$, we first consider the situation $\ell=6$. By Lemma 15 and the symmetry, it suffices to discuss the caterpillar trees $\operatorname{Cat}(4,3,4,3,4,3), \operatorname{Cat}(4,3,4,3,3,4)$, and $\operatorname{Cat}(3,4,3,3,4,3)$. We enumerate all the cases in Table 4.1 and Table 4.2 to show that the first two are strong 6 -edge-colorable with two-sided pre-coloring.

If the caterpillar tree T considered with $\sigma=6$ and $\ell=7$ has $T_{-1}=\operatorname{Cat}(3,4,3,3,4,3)$, then T is a subtree of $\operatorname{Cat}(3,4,3,3,4,3,4)$. We can assume $T=\operatorname{Cat}(3,4,3,3,4,3,4)$ by Lemma 15. Reverse the direction to see T as $\operatorname{Cat}(4,3,4,3,3,4,3)$. Then the subtree $T_{-1}=\operatorname{Cat}(4,3,4,3,3,4)$, which is strong 6 -edge-colorable with two-sided pre-coloring.

α_{0}	\widehat{C}_{1}	α_{1}	\widehat{C}_{2}	α_{2}	\widehat{C}_{3}	α_{3}	\widehat{C}_{4}	α_{4}	\widehat{C}_{5}	α_{5}	\widehat{C}_{6}	α_{6}
1	$\{3,4\}$	2	$\{6\}$	5	$\{3,4\}$	1	$\{2\}$	6	$\{4,5\}$	3	$\{2\}$	1
1	$\{2,4\}$	3	$\{5\}$	6	$\{1,4\}$	2	$\{3\}$	5	$\{4,5\}$	1	$\{3\}$	2
1	$\{3,4\}$	2	$\{6\}$	5	$\{3,4\}$	1	$\{2\}$	6	$\{3,4\}$	5	$\{2\}$	1
1	$\{2,4\}$	3	$\{5\}$	6	$\{1,4\}$	2	$\{5\}$	3	$\{4,6\}$	1	$\{5\}$	2
1	$\{2,4\}$	3	$\{5\}$	6	$\{2,4\}$	1	$\{5\}$	3	$\{4,6\}$	2	$\{1\}$	5
1	$\{2,4\}$	3	$\{5\}$	6	$\{2,4\}$	1	$\{5\}$	3	$\{2,4\}$	6	$\{5\}$	1
1	$\{2,3\}$	4	$\{5\}$	6	$\{2,3\}$	1	$\{5\}$	4	$\{2,3\}$	6	$\{1\}$	5
1	$\{3,4\}$	2	$\{6\}$	5	$\{1,4\}$	3	$\{2\}$	6	$\{1,5\}$	4	$\{3\}$	2
1	$\{2,3\}$	4	$\{5\}$	6	$\{1,3\}$	2	$\{5\}$	4	$\{1,6\}$	3	$\{5\}$	2
1	$\{2,3\}$	4	$\{5\}$	6	$\{1,3\}$	2	$\{5\}$	4	$\{1,6\}$	3	$\{2\}$	5
1	$\{2,3\}$	4	$\{5\}$	6	$\{1,3\}$	2	$\{5\}$	4	$\{1,3\}$	6	$\{5\}$	2
1	$\{2,4\}$	3	$\{5\}$	6	$\{1,4\}$	2	$\{5\}$	3	$\{1,4\}$	6	$\{2\}$	5

Table 4.1: The 6 -strong edge-colorings for $T=\operatorname{Cat}(4,3,4,3,4,3)$.

α_{0}	\widehat{C}_{1}	α_{1}	\widehat{C}_{2}	α_{2}	\widehat{C}_{3}	α_{3}	\widehat{C}_{4}	α_{4}	\widehat{C}_{5}	α_{5}	\widehat{C}_{6}	α_{6}
1	$\{2,4\}$	3	$\{5\}$	6	$\{2,4\}$	1	$\{3\}$	5	$\{6\}$	4	$\{2,3\}$	1
1	$\{3,4\}$	2	$\{5\}$	6	$\{1,4\}$	3	$\{2\}$	5	$\{6\}$	1	$\{3,4\}$	2
1	$\{3,4\}$	2	$\{5\}$	6	$\{1,3\}$	4	$\{5\}$	2	$\{6\}$	3	$\{4,5\}$	1
1	$\{2,4\}$	3	$\{6\}$	5	$\{1,2\}$	4	$\{3\}$	6	$\{2\}$	1	$\{4,5\}$	3
1	$\{2,4\}$	3	$\{6\}$	5	$\{1,2\}$	4	$\{3\}$	6	$\{2\}$	1	$\{3,4\}$	5
1	$\{3,4\}$	2	$\{5\}$	6	$\{3,4\}$	1	$\{5\}$	2	$\{3\}$	6	$\{4,5\}$	1
1	$\{3,4\}$	2	$\{6\}$	5	$\{3,4\}$	1	$\{6\}$	2	$\{3\}$	5	$\{1,6\}$	4
1	$\{3,4\}$	2	$\{6\}$	5	$\{1,3\}$	4	$\{6\}$	2	$\{3\}$	1	$\{4,6\}$	5
1	$\{3,4\}$	2	$\{6\}$	5	$\{1,4\}$	3	$\{2\}$	6	$\{1\}$	4	$\{3,5\}$	2
1	$\{2,4\}$	3	$\{6\}$	5	$\{1,2\}$	4	$\{3\}$	6	$\{1\}$	2	$\{3,4\}$	5
1	$\{3,4\}$	2	$\{5\}$	6	$\{1,4\}$	3	$\{5\}$	2	$\{1\}$	6	$\{4,5\}$	3
1	$\{3,4\}$	2	$\{6\}$	5	$\{1,3\}$	4	$\{6\}$	2	$\{1\}$	3	$\{4,6\}$	5

Table 4.2: The 6 -strong edge-colorings for $T=\operatorname{Cat}(4,3,4,3,3,4)$.

Hence all the caterpillar trees with $\sigma=6$ and $\ell=7$ are strong 6 -edge-colorable with two-sided pre-coloring, as the other possibilities of T_{-1} can be dealt with by Lemma 16 directly.

For $\sigma=7$ and $\ell=7$. It suffices to consider the caterpillar trees in Table 4.3.
All the trees T considered except $\operatorname{Cat}(3,5,3,4,4,4,4)$ and $\operatorname{Cat}(3,5,3,4,4,3,5)$ have T_{-1}^{\prime} being strong 6 -edge-colorable with two-sided pre-coloring, so these T are strong 7 -edge-colorable with two-sided pre-coloring by Lemma 17.

If we see the caterpillar tree $\operatorname{Cat}(3,5,3,4,4,4,4)$ as $T=\operatorname{Cat}(4,4,4,4,3,5,3)$, then $T_{-1}^{\prime}=\operatorname{Cat}(3,4,3,4,3,4)$ is strong 6 -edge-colorable with two-sided pre-coloring. Similarly, regard the caterpillar tree $\operatorname{Cat}(3,5,3,4,4,3,5)$ as $T=\operatorname{Cat}(5,3,4,4,3,5,3)$, then $T_{-1}^{\prime}=\operatorname{Cat}(4,3,3,4,3,4)$ is strong 6 -edge-colorable with two-sided pre-coloring. So these

T	T_{-1}^{\prime}
$\operatorname{Cat}(3,5,3,5,3,5,3)$	$\operatorname{Cat}(3,4,3,4,3,4)$
$\operatorname{Cat}(5,3,5,3,3,5,3)$	$\operatorname{Cat}(4,3,4,3,3,4)$
$\operatorname{Cat}(5,3,3,5,3,5,3)$	$\operatorname{Cat}(4,3,3,4,3,4)$
$\operatorname{Cat}(5,3,5,3,5,3,5)$	$\operatorname{Cat}(4,3,4,3,4,3)$
$\operatorname{Cat}(5,3,3,5,3,3,5)$	$\operatorname{Cat}(4,3,3,4,3,3)$
$\operatorname{Cat}(3,5,3,5,3,4,4)$	$\operatorname{Cat}(3,4,3,4,3,3)$
$\operatorname{Cat}(5,3,5,3,4,4,4)$	$\operatorname{Cat}(4,3,4,3,3,4)$
$\operatorname{Cat}(3,5,3,4,4,4,4)$	$\operatorname{Cat}(3,4,3,3,4,3)$
$\operatorname{Cat}(5,3,4,4,4,4,4)$	$\operatorname{Cat}(4,3,3,4,3,4)$
$\operatorname{Cat}(4,4,4,4,4,4,4)$	$\operatorname{Cat}(3,4,3,4,3,4)$
$\operatorname{Cat}(3,5,3,4,4,3,5)$	$\operatorname{Cat}(3,4,3,3,4,3)$
$\operatorname{Cat}(5,3,4,4,4,3,5)$	$\operatorname{Cat}(4,3,3,4,3,3)$
$\operatorname{Cat}(4,4,3,5,3,4,4)$	$\operatorname{Cat}(3,4,3,4,3,3)$
$\operatorname{Cat}(4,4,3,5,3,3,5)$	$\operatorname{Cat}(3,4,3,4,3,3)$

Table 4.3: The caterpillar trees to be considered for $\sigma=7$ and $\ell=7$.
two trees are also strong 7-edge-colorable with two-sided pre-coloring by Lemma 17, and hence all the caterpillar trees considered with $\sigma=7$ and $\ell=7$ are strong 7 -edge-colorable with two-sided pre-coloring.

The ℓ_{σ} here cannot be reduced: For $\sigma \geq 7$, consider $\ell=\sigma-1$ and the caterpillar tree $T=\operatorname{Cat}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$, where $d_{1}, d_{3} \cdots=\left\lfloor\frac{\sigma+1}{2}\right\rfloor$ and $d_{2}, d_{4} \cdots=\left\lceil\frac{\sigma+1}{2}\right\rceil$.

If $\sigma=2 d-1$ is an odd integer, let $P=([1, \sigma] ; 1,[1, d],[1, d], 1) \in \mathcal{P}_{\sigma}(T)$. Suppose there is some $\varphi \in \mathcal{C}_{T}(P)$. Let $C_{i}=\varphi\left(E_{i}\right)$. Then $\left|C_{i+2}-C_{i}\right|=1$ for $i=1,2, \ldots, \ell-2$. So

$$
\left|C_{\ell}-C_{2}\right| \leq\left|C_{\ell}-C_{\ell-2}\right|+\left|C_{\ell-2}-C_{\ell-4}\right|+\cdots+\left|C_{4}-C_{2}\right| \leq d-2
$$

However, $C_{1}=C_{\ell}$ implies $\left|C_{\ell}-C_{2}\right|=d-1$, a contradiction.
If $\sigma=2 d-2$ is an even integer, let $P=([1, \sigma] ; 1,[1, d-1],[d, 2 d-2], d) \in \mathcal{P}_{\sigma}(T)$. Suppose there is some $\varphi \in \mathcal{C}_{T}(P)$. Let $C_{i}=\varphi\left(E_{i}\right)$. Again $\left|C_{i+2}-C_{i}\right|=1$ for $i=$ $1,2, \ldots, \ell-2$. Similarly, $d-1=\left|C_{\ell}-C_{1}\right| \leq d-2$, a contradiction.

For $\sigma=6$, let $T=\operatorname{Cat}(3,4,3,3,4,3)$ and $P=([1,6] ; 1,\{1,2,3\},\{4,5,6\}, 6) \in$ $\mathcal{P}_{\sigma}(T)$. Suppose there is some $\varphi \in \mathcal{C}_{T}(P)$. Let $C_{i}=\varphi\left(E_{i}\right)$. Then $\varphi\left(x_{3} x_{4}\right) \in\{1,2,3\}$ since $C_{1} \cup C_{2}=C_{2} \cup C_{3}=[1,6]$. Similarly, $\varphi\left(x_{3} x_{4}\right) \in\{4,5,6\}$ since $C_{4} \cup C_{5}=$ $C_{5} \cup C_{6}=[1,6]$. A contradiction follows.

Exploiting Lemma 19, the main Theorem 10 can be strengthened to:

Theorem 20. If G is a planar graph with $\sigma=\sigma(G) \geq 5, \sigma \geq \Delta(G)+2$ and girth at least g_{σ}, where

$$
g_{\sigma}= \begin{cases}41, & \text { if } \sigma=5 \\ 36, & \text { if } \sigma=6 ; \\ 5 \sigma+1, & \text { if } \sigma \geq 7\end{cases}
$$

then $\chi_{s}^{\prime}(G)=\sigma$.
If we take off the condition $\sigma \geq \Delta+2$ in Theorem 20, a weaker result can be obtained by using the following corollary of Lemma 19 in the proof of the main Theorem 10.

Corollary 21. Suppose T is a caterpillar tree of length ℓ satisfying

$$
\sigma=\sigma(T) \geq 4 \quad \text { and } \quad \ell \geq \ell_{\sigma+1},
$$

where

$$
\ell_{\sigma+1}= \begin{cases}8, & \text { if } \sigma+1=5 \\ 7, & \text { if } \sigma+1=6 \\ \sigma+1, & \text { if } \sigma+1 \geq 8\end{cases}
$$

Then T is strong κ-edge-colorable with two-sided pre-coloring for any $\kappa \geq \sigma+1$.
Proof. Add pendant edges at some vertices of T with degree $\delta(T)$ such that the resulting graph \widetilde{T} has $\sigma(\widetilde{T})=\sigma(T)+1$ and $\sigma(\widetilde{T}) \geq \Delta(\widetilde{T})+2$. So \widetilde{T} satisfies the requirements of Lemma 19, and hence it is strong κ-edge-colorable with two-sided pre-coloring for any $\kappa \geq \sigma(\widetilde{T})=\sigma(T)+1$. The corollary then follows from Lemma 15 .

Theorem 22. If G is a planar graph with $\sigma=\sigma(G) \geq 4$ and girth at least $g_{\sigma+1}$, where

$$
g_{\sigma+1}= \begin{cases}41, & \text { if } \sigma+1=5 \\ 36, & \text { if } \sigma+1=6,7 \\ 5 \sigma+6, & \text { if } \sigma+1 \geq 8\end{cases}
$$

then $\sigma \leq \chi_{s}^{\prime}(G) \leq \sigma+1$.

5 Consequences concerning the

maximum average degree

The following lemma is a direct consequence of Proposition 2.2 in [14].
Lemma 23 (Cranston and West '13 [14]). Suppose the connected graph G is not a cycle. If G has minimum degree at least 2 and average degree $\frac{2|E|}{|V|}<2+\frac{2}{3 \ell-1}$, then G contains an ℓ-thread.

A C_{n}-jellyfish is a graph by adding pendant edges at the vertices of C_{n}. In [9], it is shown that

Proposition 24 (Chang et al.' 15 [9]). If G is a C_{n}-jellyfish of m edges with $\sigma(G) \geq 4$, then $\chi_{s}^{\prime}(G)=$

$$
\begin{cases}m, & \text { if } n=3 ; \\ \sigma(G)+1, & \text { if } n=4 ; \\ \left\lceil\frac{m}{\lfloor n / 2\rfloor}\right\rceil, & \text { otherwise, if } n \text { is odd with all } \operatorname{deg}\left(v_{i}\right)=d \text { but }(n, d) \neq(7,3), \\ & \text { or with }\left\lceil\frac{m}{\lfloor n / 2\rfloor}\right\rceil \geq \sigma(G)+1 ; \\ \sigma(G)+1, & \text { otherwise, if }(n, d)=(7,3) \text { with all } \operatorname{deg}\left(v_{i}\right)=d, \\ & \text { or } n \not \equiv 0(\bmod 3) \text { such that up to rotation } \operatorname{deg}\left(v_{i}\right)=\sigma(G)-1 \\ & \text { for } i \equiv 1(\bmod 3) \text { with } 1 \leq i \leq 3\left\lfloor\frac{n}{3}\right\rfloor-2, \\ & \text { or }(n, \sigma(G))=(10,4) \text { with } \operatorname{deg}\left(v_{i}\right)=3 \\ & \text { for all odd or all even } i ;\end{cases}
$$

Adopting these results leads to a strengthening of Theorem 9.

Theorem 25. If G is a graph with $\sigma=\sigma(G) \geq 5, \sigma \geq \Delta(G)+2$, odd girth at least g_{σ}^{\prime}, even girth at least 6 , and $\operatorname{mad}(G)<2+\frac{2}{3 \ell_{\sigma}-1}$, where

$$
g_{\sigma}^{\prime}=\left\{\begin{array}{ll}
9, & \text { if } \sigma=5 ; \\
\sigma, & \text { if } \sigma>5,
\end{array} \quad \text { and } \quad \ell_{\sigma}= \begin{cases}8, & \text { if } \sigma=5 \\
7, & \text { if } \sigma=6 \\
\sigma, & \text { if } \sigma \geq 7\end{cases}\right.
$$

then $\chi_{s}^{\prime}(G)=\sigma$.

Proof. In the proof of Theorem 20, alternatively use Lemma 23 to find an ℓ_{σ}-thread in H. It should be noticed the girth constraints exist merely to address the problem that H may be a cycle. In this case, by Proposition 24, G still has strong chromatic index σ.

Indeed, suppose $H=C_{n}$ and G is a C_{n}-jellyfish. The case n is even is trivial. If $\sigma \geq \sigma(H) \geq 5, n$ is odd and $n \geq g_{\sigma}^{\prime} \geq \sigma$, then

$$
\left\lceil\frac{|E(G)|}{\left\lfloor\frac{n}{2}\right\rfloor}\right\rceil \leq\left\lceil\frac{\frac{n-1}{2}(\sigma-1)+\frac{\sigma+1}{2}-1}{\frac{n-1}{2}}\right\rceil \leq \sigma
$$

Hence $\chi_{s}^{\prime}(G)=\sigma$.

Similarly, Theorem 22 can be modified correspondingly.

Theorem 26. If G is a graph with $\sigma=\sigma(G) \geq 4$, odd girth at least $\frac{\sigma+1}{2}$, and $\operatorname{mad}(G)<$ $2+\frac{2}{3 \ell_{\sigma+1}-1}$, where

$$
\ell_{\sigma+1}= \begin{cases}8, & \text { if } \sigma+1=5 \\ 7, & \text { if } \sigma+1=6 \\ \sigma+1, & \text { if } \sigma+1 \geq 7\end{cases}
$$

then $\sigma \leq \chi_{s}^{\prime}(G) \leq \sigma+1$.

Bibliography

[1] L. D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math., 108(1-3):231-252, 1992.
[2] K. Appel and W. Haken, Every planar map is four colorable. Part I: Discharging, Illinois J. of Math., 21(3):429-490, 1977.
[3] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. Part II: Reducibility, Illinois J. of Math., 21(3):491-567, 1977.
[4] C. Barrett, G. Istrate, A. V. S. Kumar, M. Marathe, S. Thite, and S. Thulasidasan, Strong edge coloring for channel assignment in wireless radio networks, in PERCOMW '06: Proceedings of the 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 106-110, IEEE Computer Society, Washington, DC, 2006.
[5] M. Basavaraju and M. C. Francis, Strong chromatic index of chordless graphs, J. Graph Theory, 80(1):58-68, 2015.
[6] J. Bensmail, A. Harutyunyan, H. Hocquard, and P. Valicov, Strong edge-colouring of sparse planar graphs, Discrete Appl. Math., 179:229-234, 2014.
[7] O. V. Borodin and A. O. Ivanova, Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory, 33(4):759770, 2013.
[8] H. Bruhn and F. Joos, A stronger bound for the strong chromatic index, preprint at arXiv: $1504.02583 \mathrm{v} 1,22$ pages, 2015.
[9] G. J. Chang, S.-H. Chen, C.-Y. Hsu, C.-M. Hung, and H.-L. Lai, Strong edgecoloring for jellyfish graphs, Discrete Math., 338(12):2348-2355, 2015.
[10] G. J. Chang and D. D.-F. Liu, Strong edge-coloring for cubic Halin graphs, Discrete Math., 312(8):1468-1475, 2012.
[11] G. J. Chang, M. Montassier, A. Pêcher, and A. Raspaud, Strong chromatic index of planar graphs with large girth, Discuss. Math. Graph Theory, 34(4):723-733, 2014.
[12] G. J. Chang and N. Narayanan, Strong chromatic index of 2-degenerate graphs, J. Graph Theory, 73(2):119-126, 2013.
[13] D. W. Cranston, Strong edge-coloring of graphs with maximum degree 4 using 22 colors, Discrete Math., 306(21):2772-2778, 2006.
[14] D. W. Cranston, D. B. West, A guide to the discharging method, preprint at arXiv: 1306.4434v1, 77 pages, 2013.
[15] M. Dębski, J. Grytczuk, and M. Śleszyńska Nowak, The strong chromatic index of sparse graphs, Inform. Process. Lett., 115(2):326-330, 2015.
[16] P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math., 72(1-3):81-92, 1988.
[17] P. Erdős and J. Nešetřil. Problems, in Irregularities of Partitions, pp. 162-163, Springer, Berlin, 1989.
[18] R. J. Faudree, A. Gyárfás, R. H. Schelp, and Z. Tuza, The strong chromatic index of graphs, Ars Combin., 29B:205-211, 1990.
[19] J. L. Fouquet and J. L. Jolivet, Strong edge-colorings of graphs and applications to multi-k-gons, Ars Combin., 16:141-150, 1983.
[20] J. L. Fouquet and J. L. Jolivet, Strong edge-coloring of cubic planar graphs, in Progress in graph theory, pp. 247-264, Academic Press, Toronto, 1984.
[21] H. Grötzsch, Ein dreifarbensatz fur dreikreisfreie netze auf der kugel, Math.-Natur. Reihe, 8:109-120, 1959.
[22] P. Horák, H. Qing, and W. T. Trotter, Induced matchings in cubic graphs, J. Graph Theory, 17(2):151-160, 1993.
[23] D. Hudák, B. Luzar, R. Soták, and R. Skrekovski, Strong edge-coloring of planar graphs, Discrete Math., 324:41-49, 2014.
[24] J. Janssen and L. Narayanan, Approximation algorithms for channel assignment with constraints, Theoret. Comput. Sci., 262(1-2):649-667, 2001.
[25] H.-H. Lai, K.-W. Lih, and P.-Y. Tsai, The strong chromatic index of Halin graphs, Discrete Math., 312(9):1536-1541, 2012.
[26] K.-W. Lih and D. D.-F. Liu, On the strong chromatic index of cubic Halin graphs, Appl. Math. Lett., 25(5):898-901, 2012.
[27] M. Mahdian, The strong chromatic index of C_{4}-free graphs, Random Structures Algorithms, 17(3-4):357-375, 2000.
[28] M. Molloy and B. Reed, A bound on the strong chromatic index of a graph, J. Combin. Theory Ser. B, 69(2):103-109, 1997.
[29] T. Nandagopal, T.-E. Kim, X. Gao, and V. Bharghavan, Achieving MAC layer fairness in wireless packet networks, in MobiCom '00: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 87-98, ACM, New York, 2000.
[30] J. Nešetrìl, A. Raspaud, and E. Sopena, Colorings and girth of oriented planar graphs, Discrete Math., 165/166:519-530, 1997.
[31] S. Ramanathan, A unified framework and algorithm for channel assignment in wireless networks, Wireless Networks, 5(2):81-94, 1999.
[32] S. Ramanathan and E. L. Lloyd, Scheduling algorithms for multihop radio networks, IEEE/ACM Transactions on Networking, 1(2):166-177, 1993.
[33] D. P. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory Ser. B, 83(2):201-212, 2001.
[34] W. C. Shiu, P. C. B. Lam, and W. K. Tam, On strong chromatic index of Halin graphs, J. Combin. Math. Combin. Comput., 57:211-222, 2006.
[35] W. C. Shiu and W. K. Tam, The strong chromatic index of complete cubic Halin graphs, Appl. Math. Lett., 22(5):754-758, 2009.
[36] H. Tamura, K. Watanabe, M. Sengoku, and S. Shinoda, A channel assignment problem in multihop wireless networks and graph theory, J. Circuits Systems Comput., 13(02):375-385, 2004.
[37] O. Togni, Strong chromatic index of products of graphs, Discrete Math. Theor. Comput. Sci., 9(1):47-56, 2007.
[38] V. G. Vizing, Critical graphs with given chromatic class, Diskret. Analiz, 5:9-17, 1965.
[39] T. Wang, Strong chromatic index of k-degenerate graphs, Discrete Math., 330:1719, 2014.
[40] T. Wang and X. Zhao, Odd graph and its application on the strong edge coloring, preprint at arXiv: 1412.8358v3, 7 pages, 2015.
[41] G. Yu, Strong edge-colorings for k-degenerate graphs, Graphs Combin., 31(5):1815-1818, 2015.

