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Abstract

A strong k-edge-coloring of a graph G is a mapping from the edge set
E(G)to{1,2,...,k} such that every pair of distinct edges at distance at most
two receive different colors. The strong chromatic index x/,(G) of a graph G
is the minimum k& for which G has a strong k-edge-coloring. The concept
of strong edge-coloring was introduced by Fouquet and Jolivet to model the
channel assignment in some radio networks. Denote the parameter o(G) =
maX,,cp(c)ideg(r) + deg(y) — 1}. It is easy to see that o(G) < x,(G) for
any graph G, and the equality holds when G is a tree. For a planar graph GG
of maximum degree A, it was proved that x’.(G) < 4A + 4 by using the Four
Color Theorem. The upper bound was then reduced to 4A, 3A+5, 3A+1, 3A,
2A — 1 under different conditions for A and the girth. In this paper, we prove
that if the girth of a planar graph G is large enough and o(G) > A(G) + 2,
then the strong chromatic index of G is precisely o(G). This result reflects

the intuition that a planar graph with a large girth locally looks like a tree.

Keywords: Strong chromatic index, planar graph, girth.
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1 Introduction

A strong k-edge-coloring of a graph G is a mapping from E(G) to {1, 2, ..., k} such that
every pair of distinct edges at distance at most two receive different colors. It induces a
proper vertex coloring of L(G)?, the square of the line graph of G. The strong chromatic
index X'.(G) of G is the minimum & for which G has a strong k-edge-coloring. This
concept was introduced by Fouquet and Jolivet [19, 20] to model the channel assignment

in some radio networks. For more applications, see [4, 29, 32, 31, 24, 36].

A Vizing-type problem was asked by Erdés and Nesettil, and further strengthened
by Faudree, Schelp, Gyarfas and Tuza to give an upper bound for x’.(G) in terms of the

maximum degree A = A(G):

Conjecture 1 (Erdds and Nesettil 88 [16] *89 [17], Faudree et al. *90 [18)). If G is a

graph with maximum degree A, then X'.(G) < A% + L%JQ.

As demonstrated in [18], there are indeed some graphs reach the given upper bounds.

By a greedy algorithm, it can be easily seen that y/,(G) < 2A(A — 1) + 1. Molloy
and Reed [28] used a probabilistic method to show that x,(G) < 1.998A?% for maximum
degree A large enough. Recently, this upper bound was improved by Bruhn and Joos [8]
to 1.93A2.

For small maximum degrees, the cases A = 3 and 4 were studied. Andersen [1] and
Horak et al. [22] proved that x.(G) < 10 for A(G) < 3 independently; and Cranston [13]
showed that x’.(G) < 22 when A(G) < 4.

According to the examples in [18], the bound is tight for A = 3, and the best we may

expect for A = 4 is 20.
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The strong chromatic index of a few families of graphs are examined, such as cycles,
trees, d-dimensional cubes, chordal graphs, Kneser graphs, k-degenerate graphs, chordless
graphs and Cy-free graphs, see [5, 12, 15, 18, 27, 39, 41]. As for Halin graphs, refer to
[10, 25, 26, 34, 35]. For the relation to various graph products, see [37].

Now we turn to planar graphs.

Faudree et al. used the Four Color Theorem [2, 3] to prove that planar graphs with
maximum degree A are strong (4A + 4)-edge-colorable [18]. By the same spirit, it can be
shown that Kz-minor free graphs are strong (4A + 4)-edge-colorable. Moreover, every
planar graph G with girth at least 7 and A > 7 is strong 3A-edge-colorable by applying
a strengthened version of Vizing’s Theorem on planar graphs [33, 38] and Grotzsch’s

theorem [21].

The following results are obtained by using a discharging method:

Theorem 2 (Hudak et al. ’14 [23]). If G is a planar graph with girth at least 7, then
X5(G) < 3A(G).

Theorem 3 (Bensmail et al. *14 [6]). If G is a planar graph with girth at least 6, then
XL:(G) < 3A(G) + 1.

Theorem 4 (Bensmail et al. *14 [6]). If G is a planar graph with girth at least 5 or maxi-

mum degree at least 7, then x.(G) < 4A(G).

It is also interesting to see the asymptotic behavior of strong chromatic index when the

girth is large enough.

Theorem 5 (Borodin and Ivanova ’13 [7]). If G is a planar graph with maximum degree

A > 3 and girth at least 40| 5| + 1, then X,(G) < 2A — L.

Theorem 6 (Chang et al. 14 [11]). If G is a planar graph with maximum degree A > 4
and girth at least 10A + 46, then x.(G) < 2A — 1.

Theorem 7 (Wang and Zhao ’15 [40]). If G is a planar graph with maximum degree
A > 4 and girth at least 10A — 4, then \,(G) < 2A — 1.

2
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The concept of maximum average degree is also an indicator of the sparsity of a graph.
Graphs with small maximum average degrees are in relation to planar graphs with large

girths, as a folklore lemma that can be proved by Euler’s formula points out.

Lemma 8. A4 planar graph G with girth g has maximum average degree mad(G) < 2 +

4
g—2°

Many results concerning planar graphs with large girths can be extended to more gen-

eral graphs with small maximum average degrees. Strong chromatic index is no exception.

Theorem 9 (Wang and Zhao ’15 [40]). Let G be a graph with maximum degree A > 4.
If the maximum average degree mad(G) < 2 + m+2’ the even girth is at least 6 and the

odd girth is at least 2A — 1, then X, (G) < 2A — 1.

In terms of maximum degree A, the bound 2A — 1 is best possible. We seek for a
better parameter as a refinement. Define

o(G) = xyrgggG){deg(x) + deg(y) — 1}

An antimatching is an edge set S C F/(G) in which any two edges are at distance at
most 2, thus any strong edge-coloring assigns distinct colors on .S. Notice that each color
set of a strong edge-coloring is an induced matching, and the intersection of an induced
matching and an antimatching contains at most one edge. The fact suggests a dual problem
to strong edge-coloring: finding a maximum antimatching of GG, whose size is denoted by
am(G). For any edge xy € E(G), the edges incident with 2y form an antimatching of
size deg(x) + deg(y) — 1. Together with the weak duality, this gives the inequality

X.(G) > am(G) > o(G).

By induction, we see that for any nontrivial tree 7', x.(T)) = o(T) attains the lower
bound [18]. Based on the intuition that a planar graph with large girth locally looks like a
tree, in this paper, we focus on this class of graphs. More precisely, we prove the following

main theorem:
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Theorem 10. If G is a planar graph with 0 = o(G) > 5, 0 > A(G) + 2 and girth at

least 50 + 16, then x,(G) = o.

We also make refinement on the girth constraint and gain a stronger result in Section 4.

The condition o > A(G)+2 is necessary as shown in the following example. Suppose
n > 1and d > 2. Construct Gs,,+1 4 from the cycle (21, 22, ..., Z3,+1) by adding d — 2
leaves adjacent to each x3; for 1 < i < n. Then 0(Gsp414) = d+1 < d+2 =

A(Gsp+1,4) + 2. See Figure 1.1 for G341 4.

Figure 1.1: The graph G3,,41 4.

We claim that 0(Gsp41.4) < X5(Gsnt1.4)- Suppose to the contrary that o(Gspt1.4) =
Xi(Gspni1.4). For1 < i < n, the 0 — 1 edges incident to x3;, together with the edge
X3i_2T3;—1 (Or T3;4173,12) use all the o colors, implying that x3;_sx3;_1 uses the same
color as x3;, 12312, Where xs, o = x1. Therefore, r125, T4%5, . .., X3,11T3,12 all use the
same color, contradicting that xx5 is adjacent to x3, 1171 = T3,41T3n12.

However, we have a corollary to remedy the situation a bit:

Corollary 11. If G is a planar graph with 0 = o(G) > 4, 0 = A(G) + 1 and girth at

least 50 + 21, then X.(G) < o + 1.

Proof. There must be some vertex x € V(G) of degree 2 and adjacent to another vertex
of maximum degree in G. We add a pendant edge at x such that the resulting graph G has
o(G) = 041 = A(G)+2 = A(G)+2. Now G satisfies the requirements of Theorem 10.

Hence it is (o + 1)-strong edge-colorable, and so is its subgraph G. O
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2 The proof of the main theorem

To prove the main theorem, we need two lemmas and a key lemma, Lemma 18, to be
verified in the next section.
The first lemma can be used to prove that any tree 7" has strong chromatic index o (T')

by induction.

Lemma 12. Suppose x1x4 is a cut edge of a graph G, and G, is the component of G —x 125
containing x; joining the edge x1xo fori = 1, 2. If for some integer k, deg(z,)+deg(xs) —
1 <kand ', (G;) < kfori=1,2 then X',(G) < k.

Proof. Choose a strong k-edge-coloring f; of G; fori = 1,2. Let E; be the set of edges
incident with z; in G; — z129 and S; = f;(E;). Since deg(x;) + deg(xzs) — 1 < Kk,
we may assume S; and Sy are disjoint and fi(z122) = fo(z122) is some element ¢ €

{1, 2, ce k}\ (Sl U SQ) Then

;

fl(e), 1f€ € E(Gl) — X1T9;

fle) =1 fale), ife e E(Gy) — z1as;

c, ife = 129
\

is a strong k-edge-coloring of G. [

The following lemma about planar graphs is also useful in the proof of the main theo-
rem. An {-thread is an induced path of ¢ + 2 vertices all of whose internal vertices are of

degree 2 in the full graph.

Lemma 13 (Nesettil et al.’97 [30]). Any planar graph G with minimum degree at least 2

and with girth at least 5{ + 1 contains an (-thread.

5
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Proof. Contract all the vertices of degree 2 to obtain G’. Notice that G’ is a planar graph
which may have multi-edges and may be disconnected. Embed G’ = (V, E) in the plane
as P. Then Euler’s Theorem says that |V | — |E| + |F'| > 2, where F is the set of faces of
P.If G" has girth larger than 5, we have 2|E| = 7, _-deg(f) > 6|F|. Butthat G has no

vertices of degree 2 implies 2|E| = > __, deg(v) > 3|V|. Combining all these produces

veV

a contradiction:
2 1
2<|V|—=|E|+|F| < g]E[—\E\Jrg\E\ =0.

Hence G’ has a cycle of length at most 5. The corresponding cycle in G has length at least
5¢ + 1. Thus one of these edges in G’ is contracted from ¢ vertices in GG, and so G has the

required path. [

These two lemmas, together with Lemma 18 in the next section, lead to the following

proof of the main theorem:

Proof of Theorem 10. Since the inequality x,(G) > o is trivial, it suffices to show that
X.(G) < 0. That is, G admits a strong o-edge-coloring ¢. Suppose to the contrary that
there is a counterexample GG with fewest number of non-leaf vertices.

Notice that any proper subgraph of G with fewer non-leaf vertices than GG admits a
strong o-edge coloring. This follows from the minimality of G, unless the proper subgraph
G’ does not satisfy the condition o(G’) > A(G’) + 2. However, it implies that 0(G’) <
A(G) +2 < A(G) + 2 < 0. The equality o(G') = A(G’) means G’ is a star, which
is obviously o-strong edge-colorable. As for the case o(G') = A(G’) + 1, although
Corollary 11 is derived from this theorem, it is still valid to be used since the proof only
requires the graph G/, obtained by joining a leaf to G/, to be a(a)-strong edge-colorable,
which is true as there are indeed fewer non-leaf vertices in G’ than in G. So XL(G) <
o(G")+1<o.

As a consequence, if GG is not a star, then there is no non-leaf vertex = adjacent to
deg(x) — 1 leaves. For otherwise, there is a cut edge xy, where y is not a leaf. By applying

Lemma 12 to G with the cut edge xy, we get a contradiction.

6
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Consider H = G — {z € V(G) : deg(x) = 1}, which clearly has the same girth as G
since the deletion doesn’t break any cycle. And we have the minimum degree 6(H) > 2,
for otherwise GG has a vertex x adjacent to deg(z) — 1 leaves, which is impossible as
noted above. Lemma 13 claims that there is a path xgz; ... 241 With ¢ = o + 3 and
degy (z;) =2fori =1,2,...,¢. Now let G’ be the subgraph obtained from G by deleting
the leaf-neighbors of x1, s, ..., x, and the vertices x5, x3, ..., z,_1. This subgraph has
fewer non-leaf vertices than G, so it admits a strong o-edge-coloring ¢,. Consider the
subgraph 7" of GG induced by x4, zs, . . ., , and their neighbors, which is a caterpillar tree.
By Lemma 18 that will be proved in the next section, 7" admits a strong o-edge-coloring
9 such that ¢; and , coincides on the edges xox; and xyxy, 1; furthermore, the edges
incident to xy and z; all receive different colors, and so do the edges incident to z, and

Z¢4+1. By gluing these two edge-colorings we construct a strong o-edge-coloring of G. [
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3 The key lemma: caterpillar with edge

pre-coloring

The purpose of this section is to prove the key lemma, Lemma 18, in this thesis.

All the graphs in this section are caterpillar trees. Let d; > 2 forv = 1,2,..., /(.
By T = Cat(d,,dy, . ..,d,) we mean a caterpillar tree with spine xq, x1, ..., 2,41, whose
degrees are dy, dy, . . ., dyi1, where dg = dy1 = 1. Call £ the length of 7" and let E; be the

edges incident with ;. See Figure 3.1 for Cat(5,3,2,4,5).

Is Tg

Figure 3.1: The caterpillar tree Cat(5,3,2,4,5).

For color sets C and Cy, denote C; — Cy := C}\C}, the difference of the two sets. If
Cy = {a} contains only one element, we also denote it by C; — «.

Collect all the tuples (C'; o, C1, Cy, ) as P (T), where the color sets Cy,Cy, C C
with |Cy| = dy,|Cy| = dy, |C] = Kk, and ay € Ci,ap € Cy. Fix kK € N. For any
P = (C;ap,C1,Cy, ) € Po(T), the set of all strong edge-colorings ¢ using the colors

in C and satisfying the following criterions is denoted by Cr(P):

o(Er) =C1, @(Ey) =Cr, @(rox1) = ap and  p(xee41) = ay.

If Cr(P) is nonempty for any P € P.(T') with k > o(T'), then T is said to be strong

k-edge-colorable with two-sided pre-coloring.
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Lemma 14. [f T = Cat(dy,ds, ..., dy) is strong k-edge-colorable with two-sided pre-

coloring, then T is strong k'-edge-colorable with two-sided pre-coloring for any k' > k.

Proof. Forany P’ = (C'; o), C1, C}, o) € P (T), wehave to find a strong edge-coloring
in Cr(P’).

Case |C] U ()| < k: Choose a k-set C' so that C] U C; € C' C C". By assumption,
there is a strong edge-coloring in Cr(C'; o), C1, C}, o) C Cp(P').

Case |C] U ()| > k: Choose a k-set C' so that C] U {a,} € C C C{UC), and a
de-set Cy so that C; N C' C C, C C. By assumption, there is a strong edge-coloring ¢ in
Cr(C;aq, C, Cy, o). Let the edges in E, with color Cy — C} be E;. Notice C}) — C, and
C' are disjoint, so the colors in C; — Cy are not appeared in . Hence we can change the

colors of Ej to ) — C; and obtain a strong edge-coloring in Cr(P’). O

We now derive a series of properties regarding the strong edge-pre-colorability with

two-sided pre-coloring of a caterpillar tree and its certain subtrees.

Lemma 15. Suppose a caterpillar tree T contains T as a subgraph, and both have the

same length. If T is strong k-edge-colorable with two-sided pre-coloring, then so is T

Proof: Suppose (C; a0, Cy, G, ar) € Py(T). We find (C; a0, CY, Cly ) € Py(T) such
that C 2 C; and C} O Cy. The lemma follows that any ¢’ € C#(C’; o, C1, Cj, ay) has a

restriction  on 7" so that ¢ is a strong edge-coloring in Cr(C’; ag, C1, Cy, ap). U
For T' = Cat(dy, ds, . .., dy), let T_; be the subtree Cat(dy, ds, ..., ds_1).

Lemma 16. For a caterpillar tree T = Cat(dy,ds,...,dy), if T_1 is strong k-edge-

colorable with two-sided pre-coloring, where k. > o (T), then so is T.

Proof. Forany P = (C; g, C1, Cy, ) € Po(T), pick ay1 € Cp — ayand Cp_q a dy_1-
subset of C' with Cy_; N Cy = {ay_1}. Notice that C;_; can be chosen since d, 1 +
dy — 1 < o(T) < k. By the assumption, 7_; admits a strong x-edge-coloring ¢ €
Cr_,(C;ap,Cy, Cy_q,a_1). Coloring the remaining edges with Cy — a1 so that z,xp

has color «y results in a strong x-edge-coloring in Cr(P). [

9
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Hereafter, if necessary we reverse the order to view 7' = Cat(d,, dy_1, . . ., d;) so that
we can always assume o(7_1) = o(T'). Hence the requirement x > o(7T') in Lemma 16
automatically holds.

For a caterpillar tree 7, we define 7" and I as follows. Call a vertex x; o-large if

d; > d* := [2HL]. The value d* is critical in the sense that

1. If d; + d; < o + 1, then either d; or d; must be at most d*.

2. If d; + d; > o + 1, then either d; or d; must be at least d*.

Let S = {x; : i € Ir} be the set of all o-large vertices, except that if there exist i < j
with d;_1 < d*, d; = di+1 =...= d]’ = d* and dj+1 < d*, we only take Liy Lit2, Litdy - -
till z; or x;_, depending on the parity. Then S is a nonempty independent set. Consider

a new degree sequence d;, d5, . .., d, where

, dz—l, ifi € ]T7

d;, ifi ¢ Ir.
Then 7" = Cat(d}, d,,...,d}) is a caterpillar tree isomorphic to a subgraph of 7', with
o(T") = o(T) — 1 due to the criticalness of d* and the choice method of S.

It is straightforward to see that (7")_, = (1_,)" = Cat(d}, d,, .. .,d,_,) by the choice

method of S, and we denote it by 7", for short.

Lemma 17. For T = Cat(dy,ds, . ..,d;), suppose 0 = o(T) = o(T_1) > 6 and T,
is strong (o — 1)-edge-colorable with two-sided pre-coloring, then T is strong o-edge-

colorable with two-sided pre-coloring.

Proof. Forany P = (C;ay, Cy, Cy, ay) € P,(T'), we must show that Cr(P) is nonempty.

Let I = I7. Our strategy is to search for a color /3 such that

g e Cyifandonlyifl € I;and g € Cyifand only if £ € I.

Suppose such a color /3 exists and 5 # ay,. By Lemma 16, 7" admits a strong (o — 1)-edge

coloring in Cp/(C' — f3; avg, C1 — B, Cy — B, o). Coloring the remaining edges with 3 then

10
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yields the required strong x-edge-coloring in C( P). Notice that S being an independent
set guarantees that the edges with color 3 form an induced matching. If it happens that 3
coincides with «y, then we seek instead for strong-edge coloring in C7(C' — 3; g, C; —
B,Ce— [, a) for arbitrary o, € Cy — ap. We make use of the symmetry of pendant edges
incident with x, and still achieve the goal.

Sometimes there is no suitable 5. We alternatively consider 7_;. By finding appro-
priate dy_q-subset Cy_y C C and oy with Cy_y N Cy = {ay_1}, there will be a 5 such
that

pgeCyifandonlyifl € I;and § € Cy_y ifandonlyif ¢ — 1 € .

Similarly, there is a strong edge-coloring in Cr_, (C; oy, C1, Co—1, p—_1), as T” ; is strong
(o —1)-edge-colorable with two-sided pre-coloring. Color the remaining edges with Cy —
ay—1 so that x4z, has color ay, we gain a strong o-edge-coloring in Cr(P).

We now prove the existence of § according to the following four cases.

Case 1. 1,7 € 1. In this case, C; N C} is nonempty since

|Cl OOA = |01| + |Og| — |01 UCg| > 2d" — o > 0.

Pick 3 to be any color in the intersection.

Case2. 1 € Ibut?¢ ¢ [. If C; — C, is nonempty, then pick /5 to be any color in
the difference. Otherwise, 1 € [ and ¢ ¢ [ imply d; > d* > dy. On the other hand,
Cy — Cy = () implies d; < d,. Thus the situation that C; — Cy is empty occurs only when
dy = dy = d* and C} = C,. We consider the subtree 7_;. Choose ay,_; to be any color in
Cy — ay. Let Cy_ be ay_; together with any (dy—; — 1)-subset in C' — C,.

Since dy = d* but £ ¢ I, it is the case that { — 1 € [ and d;_; = d*. Pick § = ay_;.

Case3. ( € Ibutl ¢ I. If C, — C is nonempty, then let 5 be any color in the
difference. Otherwise, dy = dy = d* and C; = C,. Butd; = d" implies1 € I, a
contradiction.

Cased. 1,0 ¢ [. If C — (C} U Cy) is nonempty, then pick 5 to be any color in the

difference set. Now, suppose C' = C U Cy. We consider the subtree 7"_;.

11
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First estimate the size

‘Cg—01|:’CgU01|—|Cl|ZO'—d*Zd*—222,

where d* > 4 since o > 6. Pick a4 to be any color in Cy — C'y — ay. Let Cy_1 be a color
set such that |Cy,_;| = dy_y and Cp_1 N Cyp = {1 }.

When /¢ — 1 € I, pick § = ay4_1. Otherwise, let 5 be chosen from C, — Cy —ay_1. [
Now we are ready to prove the key lemma.

Lemma 18. Suppose T' = Cat(dy, ds, . .., d,) is a nice caterpillar tree, i.e. it satisfies

oc=0(T)>5, (>0+3 and o> A(T)+2.

For any k > o(T), any color sets C,,C; C C with |C| = &,

Ci| = dy,

Cy| = dy, and
any two colors oy € C, oy € Cy, there is a strong o-edge coloring  using the colors in
C' such that p(Ey) = Cy, o(E;) = Cy and p(xox1) = ap, 0(xeTes1) = oy That is, T'is

strong k-edge-colorable with two-sided pre-coloring for any k > o.

Proof. We prove the lemma by induction on o = o (T'). Recall that we always assume the
condition o(7_1) = ¢(T) holds. By Lemmas 14 and 16, it suffices to consider the case
k=ocand l =0+ 3.

If T is nice and o > 6, then 7", is also a nice caterpillar tree: The first two conditions
remain since o(7” ;) = o(T") = o(T) — 1. The third one o (7" ,) > A(T",) + 2 fails
only wheno(T) =o(7T",)+1 < A(T',)+2 < A(T)+2and so A(T") = A(T). Since
A(T) > d*, in this case, A(T") = d* > 4 and there is at least a pair of consecutive vertices
with d; = d;.1 = d*. Theno(T" ) = o(T) —1 = 2A(T) =2 > A(T) +2 > A(T",) +2.

By Lemma 17, we only have to discuss the base cases ¢ = 5 and ¢/ = 8. We may
assume all degrees d; = 3 since 0 > A + 2. Also assume C; = {1,2,3} and oy = 1.
Depending on C; N Cg and whether ag = g or not, by symmetry we color 7" according
to ¢ shown in Table 3.1, where o; = ¢(x;x;11) and @ = @(Cy) —o(xi12;) — p(xiTigq)-

Or we can solve this case by the argument in [7] or the odd graph method in [11, 40]. [
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Ci a9 Cy v C3 a3 Cp o C5 a5 Cg o C7 ap Cg

Qg asg
I {3y 2 {4y 5 {1} 3 {4} 2 {5} 1 {3y 4 {5} 2 {1} 3
I {3y 2 {4y 5 {1} 3 {4} 2 {5} 1 {3} 4 {5} 2 {3} 1
1 {2}y 3 {5} 4 {1} 2 {5} 3 {1}y 4 {2} S5 {1} 3 {4} 2
1 {2y 3 {5} 4 {1} 2 {5} 3 {1}y 4 {2}y 5 {1} 3 {2} 4
1 {3} 2 {4 5 {1} 3 {4} 2 {5} 1 {4}y 3 {5} 2 {4} 1
I {3y 2 {4y 5 {1} 3 {4} 2 {5} 1 {4y 3 {5} 2 {1} 4
I {3y 2 {4y 5 {1} 3 {2} 4 {5} 1 {2}y 3 {5} 4 {1} 2
I {3y 2 {4y 5 {1} 3 {4} 2 {5} 1 {4y 3 {2} 5 {4} 1
1 {3y 2 {4y 5 {1} 3 {4} 2 {5} 1 {4}y 3 {2} 5 {1} 4
1 {3y 2 {4 5 {1} 3 {2}y 4 {1}y S5 {2}y 3 {1} 4 {5} 2
I {3y 2 {4y 5 {1}y 3 {2y 4 {1}y 5 {2}y 3 {1} 4 {2} 5

Table 3.1: The 5-strong edge-colorings of T" for o = 5 with £ = 8.

13
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4 Refinement of the key lemma and its

consecquences

We now discuss the optimality of Lemma 18. If we take more care about the base cases,

there would be a refinement:

Lemma 19. Suppose T is a caterpillar tree of length ( satisfying
o=0(T)>5, £>/{, and o> A(T) + 2,

where

8, ifo=25;

lo =197, ifo=6;

o, ifo>T1.
\

Then T is strong r-edge-colorable with two-sided pre-coloring for any k > o.

Proof. Similar to Lemma 18, we only need to consider the base cases.

For 0 = 6, we first consider the situation / = 6. By Lemma 15 and the symme-
try, it suffices to discuss the caterpillar trees Cat(4, 3,4, 3,4, 3), Cat(4, 3,4, 3,3, 4), and
Cat(3,4,3,3,4,3). We enumerate all the cases in Table 4.1 and Table 4.2 to show that the
first two are strong 6-edge-colorable with two-sided pre-coloring.

If the caterpillar tree T’ considered with o = 6and ¢ = Thas T"_; = Cat(3,4, 3, 3,4, 3),
then 7 is a subtree of Cat(3,4,3,3,4,3,4). We can assume 7" = Cat(3,4,3, 3,4, 3,4) by
Lemma 15. Reverse the direction to see 7" as Cat(4,3,4,3,3,4,3). Then the subtree

T, = Cat(4, 3,4, 3, 3,4), which is strong 6-edge-colorable with two-sided pre-coloring.

14
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Qo 61 aq 62 Q2 63 as 64 Oy 65 Qs 66 Qg
1 {3,4y 2 {6} 5 {3,4 1 {2} 6 {4,5} 3 {2} 1
1 {2,4 3 {5} 6 {1,4} 2 {3} 5 {4,5} 1 {3} 2
1 {3,4 2 {6} 5 {3.,4 1 {2y 6 {3.,4} 5 {2} 1
1 {2,4y 3 {5} 6 {1,4} 2 {5} 3 {4,6} 1 {5} 2
1 {2,4y 3 {5} 6 {2,4} 1 {5} 3 {4,6} 2 {1} 5
1 {2,4y 3 {5} 6 {2,4} 1 {5} 3 {2,4 o6 {5} 1
1 {2,3} 4 {5 6 {2,3} 1 ({5 4 {2,3} 6 {1} 5
1 {3,4} 2 {6} 5 {1,4} 3 {2} 6 {1,5} 4 {3} 2
1 {2,3y 4 {5} 6 {1,3} 2 {5} 4 ({1,6} 3 ({5} 2
1 {2,3y 4 {5} 6 {1,3} 2 {5} 4 ({1,6} 3 {2} 5
1 {2,3y 4 {5} 6 {1,3} 2 {5} 4 {1,3} 6 ({5} 2
1 {2,4y 3 {5} 6 {1,4} 2 {5} 3 {1,4 6 {2} 5

Table 4.1: The 6-strong edge-colorings for 7' = Cat(4, 3, 4, 3,4, 3).

Qo 61 aq 62 Q2 63 as 64 Q4 65 Qs 66 Qg
1 {2,4y 3 {5} 6 {2,4 1 {3} 5 {6} 4 {2.,3% 1
1 {3,4} 2 {5} 6 {1,4 3 {2y 5 {6} 1 {3.,4} 2
1 {3,4} 2 {5} 6 {1,3} 4 {5} 2 {6} 3 {4,5} 1
1 {2,4y 3 {6} 5 {1,2}y 4 {3} 6 {2} 1 4,5} 3
1 {2,4y 3 {6} 5 {1,2} 4 {34 6 {2} 1 {3.,4} 5
1 {3,4y 2 {5} 6 {3,4} 1 {5} 2 {3} 6 4,5 1
1 {3,4} 2 {6} 5 {3,4 1 {6} 2 {3} 5 {1,6} 4
1 (3,4, 2 {6} 5 {1,3} 4 {6} 2 {3} 1 {4,6} 5
1 {3,4y 2 {6} 5 {1,4 3 {2y 6 {1} 4 {3,5} 2
1 {2,4y 3 {6} 5 {1,2}y 4 {34 6 {1} 2 {3.,4} 5
1 {3,4y 2 {5} 6 {1,4 3 {5} 2 {1} 6 4,5} 3
1 {3,4y 2 {6} 5 {1,3} 4 {6} 2 {1} 3 4,6} 5

Table 4.2: The 6-strong edge-colorings for 7" = Cat(4, 3,4, 3, 3,4).

Hence all the caterpillar trees with ¢ = 6 and ¢ = 7 are strong 6-edge-colorable with
two-sided pre-coloring, as the other possibilities of 7°_; can be dealt with by Lemma 16
directly.

For 0 = 7 and ¢ = 7. It suffices to consider the caterpillar trees in Table 4.3.

All the trees T considered except Cat(3,5,3,4,4,4,4) and Cat(3, 5,3, 4,4, 3,5) have
T’ | being strong 6-edge-colorable with two-sided pre-coloring, so these 7" are strong 7-
edge-colorable with two-sided pre-coloring by Lemma 17.

If we see the caterpillar tree Cat(3,5,3,4,4,4,4) as T = Cat(4,4,4,4,3,5,3), then
T', = Cat(3,4,3,4,3,4) is strong 6-edge-colorable with two-sided pre-coloring. Sim-
ilarly, regard the caterpillar tree Cat(3,5,3,4,4,3,5) as T' = Cat(5,3,4,4,3,5,3), then

T’ = Cat(4, 3, 3,4, 3,4) is strong 6-edge-colorable with two-sided pre-coloring. So these

15
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T T,

Cat(3,5,3,5,3,5,3) Cai(3,4, 3 4,3,4)
Cat(5,3,5,3,3,5,3) Cat(4,3,4,3,3,4)
Cat(5,3,3,5,3,5,3) Cat(4,3,3,4,3,4)
Cat(5,3,5,3,5,3,5) Cat(4,3,4,3,4,3)
Cat(5,3,3,5,3,3,5) Cat(4,3,3,4,3,3)
Cat(3,5,3,5,3,4,4) Cat(3,4,3,4,3,3)
Cat(5,3,5,3,4,4,4) Cat(4,3,4,3,3,4)
Cat(3,5,3,4,4,4,4) Cat(3,4,3,3,4,3)
Cat(5,3,4,4,4,4,4) Cat(4,3,3,4,3,4)
Cat(4,4,4,4,4,4,4) Cat(3,4,3,4,3,4)
Cat(3,5,3,4,4,3,5) Cat(3,4,3,3,4,3)
Cat(5,3,4,4,4,3,5) Cat(4,3,3,4,3,3)
Cat(4,4,3,5,3,4,4) Cat(3,4,3,4,3,3)

) )

Cat(3,4,3,4,3,3
Table 4.3: The caterpillar trees to be considered for c = 7and ¢ = 7.

two trees are also strong 7-edge-colorable with two-sided pre-coloring by Lemma 17, and
hence all the caterpillar trees considered with ¢ = 7 and ¢ = 7 are strong 7-edge-colorable

with two-sided pre-coloring. [

The ¢, here cannot be reduced: For 0 > 7, consider / = o — 1 and the caterpillar tree
T = Cat(dy, dy, ..., d;), where dy, d3--- = [ 2] and dy, dy - - - = [ZHL].

If o = 2d — 1 is an odd integer, let P = ([1,0];1,[1,d],[1,d],1) € P,(T). Suppose
there is some ¢ € Cr(P). Let C; = p(E;). Then |Ciyo — Ci| = 1fori=1,2,...,0 — 2.
So

|Cp — Cs| < |Cp—Coa +|Cpg — Cpy| + -+ -+ |Cy — Ca] < d —2.

However, C; = C, implies |C; — C3| = d — 1, a contradiction.

If o = 2d — 2 is an even integer, let P = ([1,0];1,[1,d — 1], [d, 2d — 2],d) € P,(T).
Suppose there is some ¢ € Cr(P). Let C; = p(E;). Again |Ci1o — C;| = 1 fori =
1,2,...,¢— 2. Similarly, d — 1 = |C, — (| < d — 2, a contradiction.

Foro = 6, let T = Cat(3,4,3,3,4,3) and P = ([1,6];1,{1,2,3},{4,5,6},6) €
P,(T). Suppose there is some ¢ € Cr(P). Let C; = ¢(E;). Then p(z3x4) € {1,2,3}
since C; U Cy = Cy U Cy = [1,6]. Similarly, p(zsz4) € {4,5,6} since Cy U C5 =
Cs U Cs = [1,6]. A contradiction follows.

Exploiting Lemma 19, the main Theorem 10 can be strengthened to:
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Theorem 20. If G is a planar graph with 0 = o(G) > 5, 0 > A(G) + 2 and girth at

least g, where
.

41, ifo =5;

9o = 36, if o = 6;

S50 +1, ifo>T1,
\
then X.(G) = o.

If we take off the condition o > A + 2 in Theorem 20, a weaker result can be obtained

by using the following corollary of Lemma 19 in the proof of the main Theorem 10.

Corollary 21. Suppose T is a caterpillar tree of length { satisfying
oc=0(T)>4 and (> l,44,

where )

8, ifo+1=25;

Ea—i-l: 7, lf‘0+1:6,

c+1, ifo+1>8.

\
Then T is strong k-edge-colorable with two-sided pre-coloring for any k > o + 1.

Proof. Add pendant edges at some vertices of 7' with degree 6(7") such that the resulting
graph T has o(T) = o(T) + 1 and o(T) > A(T) + 2. So T satisfies the requirements of
Lemma 19, and hence it is strong x-edge-colorable with two-sided pre-coloring for any

k> o(T) = o(T) + 1. The corollary then follows from Lemma 15. O

Theorem 22. If G is a planar graph with 0 = o(G) > 4 and girth at least g,.1, where

;

41, ifo+1=25;

Jo+1 = § 36, ifo+1=6,7;

5046, ifo+1>8,
theno < x.(G) <o+ 1.
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S Consequences concerning the

maximum average degree

The following lemma is a direct consequence of Proposition 2.2 in [14].

Lemma 23 (Cranston and West *13 [14]). Suppose the connected graph G is not a cycle.
If G has minimum degree at least 2 and average degree % <2+ % then G contains

an {-thread.

A C,-jellyfish is a graph by adding pendant edges at the vertices of C,,. In [9], it is

shown that

Proposition 24 (Chang et al.’15 [9]). If G is a C,-jellyfish of m edges with o(G) > 4,

then X'.(G) =

m, ifn = 3;
o(G)+1, ifn=4
(ﬁ}, otherwise, if n is odd with all deg(v;) = d but (n,d) # (7, 3),
orwith [ 7] 2 0(G) + 1;
o(G)+ 1, otherwise, if (n,d) = (7, 3) with all deg(v;) = d,
orn % 0 (mod 3) such that up to rotation deg(v;) = o(G) — 1
fori=1(mod3)withl <i<3|%] -2
or (n,o(G)) = (10,4) with deg(v;) = 3

for all odd or all even 1;

o(G), otherwise.

Adopting these results leads to a strengthening of Theorem 9.
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Theorem 25. If G is a graph with 0 = o(G) > 5, 0 > A(G) + 2, odd girth at least g_,

even girth at least 6, and mad(G) < 2 + 3502—71, where

(
8, ifo=05;
9, ifo=25;
9o = and Lo =37, ifo=6;
o, ifo>D5,
o, ifo>T1,

then X'.(G) = 0.

Proof. In the proof of Theorem 20, alternatively use Lemma 23 to find an ¢, -thread in H.
It should be noticed the girth constraints exist merely to address the problem that 4 may
be a cycle. In this case, by Proposition 24, G still has strong chromatic index o.

Indeed, suppose H = (), and G is a C),-jellyfish. The case n is even is trivial. If

oc>o0(H)>5,nisoddand n > ¢/ > o, then

- et

Hence x.(G) = o. O
Similarly, Theorem 22 can be modified correspondingly.

Theorem 26. If G is a graph with o = o(G) > 4, odd girth at least 3+, and mad(G) <

2
2+m, where
8, ifo+1=25;

lot1 =147, ifo+1=6;

o+1, ifo+12>7,

then o < X'.(G) <o+ 1.
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