Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38782
Title: 圖的距離二標號問題
Distance Two Labelings on Graphs
Authors: An-Chiang Chu
朱安強
Advisor: 張鎮華
Keyword: 編號函數,圖,
Labeling,L(2,1),
Publication Year : 2005
Degree: 碩士
Abstract: 給定一個圖,在此圖上的 L(2,1) 編號函數是對圖中的每一個頂點指派一個非負整數,使得任兩相鄰的點,被指派的函數值其數值要相差二以上,而距離為二的兩個點,其被指派的數值要不相同。
對於任一個圖,我們希望求得在此圖的 L(2,1) 編號函數指派下,使得其最大的指派數值所能夠達到的最小值。我們稱此數值為此圖的 L(2,1) 數。
在此篇論文中,我們將回顧過去關於圖上 L(2,1) 數的上界之證明。並對上界 Δ^2 +Δ− 2. 給一個新的證明,其中 Δ 表示圖上頂點的最大的鄰邊數。
An L(2,1)-labeling of a graph G is a function f : V (G) → N∪{0} such that for all u, v in V(G), we have |f(u) − f(v)| is not less than 2 if d(u,v) = 1, and |f(u) − f(v)| is not less than 1 if d(u,v) = 2. The L(2,1)-labeling number λ(G) of G is the smallest number k such that G has an L(2, 1)-labeling with max{f(v) : v in V (G)} = k.
In this thesis, we review some proofs for the upper bounds of λ(G), and give an alternative proof for λ(G) is less than or equal to Δ^2+Δ−2.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38782
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
294.21 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved