Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38782
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張鎮華
dc.contributor.authorAn-Chiang Chuen
dc.contributor.author朱安強zh_TW
dc.date.accessioned2021-06-13T16:46:00Z-
dc.date.available2006-07-22
dc.date.copyright2005-07-22
dc.date.issued2005
dc.date.submitted2005-06-28
dc.identifier.citation[1] G. Chang and D. Kuo, The L(2, 1) labeling problem on graph, SIAM J. Discrete Math., 9 (1996), 309-316.
[2] D. Gon¸calves, On the L(d, 1)-labeling of graphs, manuscript.
[3] J. R. Griggs and R. K. Yeh, Labeling graph with a condition at distance 2, SIAM J. Discrete Math., 5, (1992), 586-595.
[4] J.-H. Kang, L(2, 1)-labeling of 3-regular Hamiltonian graphs, manuscript.
[5] D. Kr´al’ and R. ˇSkrekovski, A theorem about the chanel assignment problem, SIAM J. Discrete Math., 16, (2003), 426-437.
[6] D. D.-F. Liu and X. Zhu, Circular distance two labeling and the λ-number for outerplanar graphs, SIAM J. Discrete Math., to appear.
[7] D. Sakai, Labeling chordal graphs with a condition at distance two, SIAM J. Discrete Math., 7 (1994), 130-140.
16
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38782-
dc.description.abstract給定一個圖,在此圖上的 L(2,1) 編號函數是對圖中的每一個頂點指派一個非負整數,使得任兩相鄰的點,被指派的函數值其數值要相差二以上,而距離為二的兩個點,其被指派的數值要不相同。
對於任一個圖,我們希望求得在此圖的 L(2,1) 編號函數指派下,使得其最大的指派數值所能夠達到的最小值。我們稱此數值為此圖的 L(2,1) 數。
在此篇論文中,我們將回顧過去關於圖上 L(2,1) 數的上界之證明。並對上界 Δ^2 +Δ− 2. 給一個新的證明,其中 Δ 表示圖上頂點的最大的鄰邊數。
zh_TW
dc.description.abstractAn L(2,1)-labeling of a graph G is a function f : V (G) → N∪{0} such that for all u, v in V(G), we have |f(u) − f(v)| is not less than 2 if d(u,v) = 1, and |f(u) − f(v)| is not less than 1 if d(u,v) = 2. The L(2,1)-labeling number λ(G) of G is the smallest number k such that G has an L(2, 1)-labeling with max{f(v) : v in V (G)} = k.
In this thesis, we review some proofs for the upper bounds of λ(G), and give an alternative proof for λ(G) is less than or equal to Δ^2+Δ−2.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T16:46:00Z (GMT). No. of bitstreams: 1
ntu-94-R92221005-1.pdf: 301267 bytes, checksum: 774e1e807a9a11f0c90a412154898204 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1. Introduction .... 1
2. Uniform Presentation for Proofs of Upper Bounds .... 3
2.1 λ(G) is less than or equal to Δ2+2Δ ... 3
2.2 λ(G) is less than or equal to Δ2+Δ .... 4
2.3 λ(G) is less than or equal to Δ2+Δ−1 .... 5
3. The Upper Bound Δ2+Δ−2 .... 8
3.1 Gon¸calves’s proof .... 8
3.2 Alternative proof .... 9
References .... 16
Notation and Definitions .... 17
dc.language.isoen
dc.subject圖zh_TW
dc.subject編號函數zh_TW
dc.subjectL(2en
dc.subjectLabelingen
dc.title圖的距離二標號問題zh_TW
dc.titleDistance Two Labelings on Graphsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李國偉,董立大
dc.subject.keyword編號函數,圖,zh_TW
dc.subject.keywordLabeling,L(2,1),en
dc.relation.page17
dc.rights.note有償授權
dc.date.accepted2005-06-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
294.21 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved