Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38265| Title: | 由多項恆等式環生成的整擴張與 Jacobson 環 Integral Extensions by a PI-ring and Jacobson Rings |
| Authors: | Wan-Yu Tsai 蔡宛育 |
| Advisor: | 莊正良 |
| Keyword: | 整擴張,有限生成環擴張,G-環,G-理想, Integral Extensions,Ring-finite Extensions,G-rings,G-ideals, |
| Publication Year : | 2005 |
| Degree: | 碩士 |
| Abstract: | 在論文的第一部份所探討的重點在於有限生成模擴張(module-finite extensions)、
有限生成環擴張(ring-finite extensions)及整擴張(integral extensions)之間的關係。而最終我們以 ring-finiteness、integrality 及 PI 的性質完整刻劃出 module-finiteness 性質,也推廣了 Pare 與 Schelter 的定理。 論文的第二部份,在統整了 Goldman 與 Krull 於交換環上有關 G-domains、 G-ideals 及 Jacobson rings 的概念與定理之後,我們的目標在於將這些相關的結論 推廣至非交換環。在此,交換中的整環(integral domains)與非交換質環(prime rings)相對應,而交換中的體(fields)則對應至非交換的單環(simple rings)。 Abstract In this paper the main theorems are as follows: (i) Assume S = RCS(R), S is a module- nite extension of R if and only if CS(R) is a PI-ring and the ring extension S=R is ring- nite and integral. (ii) Let S R be prime rings and S is a ring- nite centralizing extension of R by a PI-ring. Then S is a G-ring if and only if R is a G-ring and S is algebraic over R. (iii) If the ring R is a ~J-ring, then any ring- nite centralizing extension S of R by a PI-ring is also a ~J-ring. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38265 |
| Fulltext Rights: | 有償授權 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-94-1.pdf Restricted Access | 341.35 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
