Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38265
Title: 由多項恆等式環生成的整擴張與 Jacobson 環
Integral Extensions by a PI-ring and Jacobson Rings
Authors: Wan-Yu Tsai
蔡宛育
Advisor: 莊正良
Keyword: 整擴張,有限生成環擴張,G-環,G-理想,
Integral Extensions,Ring-finite Extensions,G-rings,G-ideals,
Publication Year : 2005
Degree: 碩士
Abstract: 在論文的第一部份所探討的重點在於有限生成模擴張(module-finite extensions)、
有限生成環擴張(ring-finite extensions)及整擴張(integral extensions)之間的關係。而最終我們以 ring-finiteness、integrality
及 PI 的性質完整刻劃出 module-finiteness 性質,也推廣了 Pare 與 Schelter 的定理。

論文的第二部份,在統整了 Goldman 與 Krull 於交換環上有關 G-domains、
G-ideals 及 Jacobson rings 的概念與定理之後,我們的目標在於將這些相關的結論
推廣至非交換環。在此,交換中的整環(integral domains)與非交換質環(prime rings)相對應,而交換中的體(fields)則對應至非交換的單環(simple rings)。
Abstract
In this paper the main theorems are as follows:
(i) Assume S = RCS(R), S is a module- nite extension of R if and
only if CS(R) is a PI-ring and the ring extension S=R is ring- nite and
integral.
(ii) Let S R be prime rings and S is a ring- nite centralizing
extension of R by a PI-ring. Then S is a G-ring if and only if R is a
G-ring and S is algebraic over R.
(iii) If the ring R is a ~J-ring, then any ring- nite centralizing extension
S of R by a PI-ring is also a ~J-ring.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38265
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
341.35 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved