請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38265完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊正良 | |
| dc.contributor.author | Wan-Yu Tsai | en |
| dc.contributor.author | 蔡宛育 | zh_TW |
| dc.date.accessioned | 2021-06-13T16:29:05Z | - |
| dc.date.available | 2006-07-21 | |
| dc.date.copyright | 2005-07-21 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-13 | |
| dc.identifier.citation | [1], Robert Par e, Williams Schelter, Finite extensions are integral, J. Algebra, (55)1978,
477-479. [2], Beidar, K.I., Martindale 3rd, W.S., Mikhalev, A.V. Rings with Generalized Identities, Marcel Dekker, Inc., New York, Basel, Hong Kong, 1996. [3], Louis Halle Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, London, Sydney, San Francisco, 1980. [4], Nathan Jacobson, PI-Algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1975. [5], Irving Kaplansky, Commutative Rings, Boston, Allyn and Bacon, INC., 1970. [6], O. Goldman, Hilbert rings and the Hilbert Nullstellensatz, Math. Z. 54(1951), 136-140. [7], W. Krull, Jacobsonsche Ringe, Hilbertscher Nullstellensatz, Math. Z. 54(1951), 354-387. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/38265 | - |
| dc.description.abstract | 在論文的第一部份所探討的重點在於有限生成模擴張(module-finite extensions)、
有限生成環擴張(ring-finite extensions)及整擴張(integral extensions)之間的關係。而最終我們以 ring-finiteness、integrality 及 PI 的性質完整刻劃出 module-finiteness 性質,也推廣了 Pare 與 Schelter 的定理。 論文的第二部份,在統整了 Goldman 與 Krull 於交換環上有關 G-domains、 G-ideals 及 Jacobson rings 的概念與定理之後,我們的目標在於將這些相關的結論 推廣至非交換環。在此,交換中的整環(integral domains)與非交換質環(prime rings)相對應,而交換中的體(fields)則對應至非交換的單環(simple rings)。 | zh_TW |
| dc.description.abstract | Abstract
In this paper the main theorems are as follows: (i) Assume S = RCS(R), S is a module- nite extension of R if and only if CS(R) is a PI-ring and the ring extension S=R is ring- nite and integral. (ii) Let S R be prime rings and S is a ring- nite centralizing extension of R by a PI-ring. Then S is a G-ring if and only if R is a G-ring and S is algebraic over R. (iii) If the ring R is a ~J-ring, then any ring- nite centralizing extension S of R by a PI-ring is also a ~J-ring. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T16:29:05Z (GMT). No. of bitstreams: 1 ntu-94-R92221002-1.pdf: 349543 bytes, checksum: 4dd4a401cb9b5c456280ac61e086a31a (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 0 Introduction . . . . . . . . . . . . . . . . . . . . 1
1 Preliminaries . . . . . . . . . . . . . . . . . . . . 2 1.1 Rings of Quotients . . . . . . . . . . . . . . . 2 1.2 Shirshov's Theorem . . . . . . . . . . . . . . . 2 2 Finite Extensions and Integral Extensions . . . . . . 6 3 G-domains, G-ideals and Jacobson Rings: Commutative Case . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Prime Centralizing Extensions . . . . . . . . . . . .18 5 G-rings, G-ideals: Noncommutative Case . . . . . . . 22 6 Reference . . . . . . . . . . . . . . . . . . . . .. 28 | |
| dc.language.iso | zh-TW | |
| dc.subject | 整擴張 | zh_TW |
| dc.subject | 有限生成環擴張 | zh_TW |
| dc.subject | G-理想 | zh_TW |
| dc.subject | G-環 | zh_TW |
| dc.subject | Integral Extensions | en |
| dc.subject | G-ideals | en |
| dc.subject | G-rings | en |
| dc.subject | Ring-finite Extensions | en |
| dc.title | 由多項恆等式環生成的整擴張與 Jacobson 環 | zh_TW |
| dc.title | Integral Extensions by a PI-ring and Jacobson Rings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李白飛,王彩蓮 | |
| dc.subject.keyword | 整擴張,有限生成環擴張,G-環,G-理想, | zh_TW |
| dc.subject.keyword | Integral Extensions,Ring-finite Extensions,G-rings,G-ideals, | en |
| dc.relation.page | 28 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 341.35 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
