Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37298
Title: 9DLT影像資料庫中封閉性樣式之資料探勘
Mining Closed Patterns in 9DLT Image Databases
Authors: Wei-Ting Wang
汪韋廷
Advisor: 李瑞庭
Keyword: 資料探勘,影像探勘,封閉性樣式,空間關係,9DLT字串,
data mining,image mining,closed pattern,spatial relation,9DLT string,
Publication Year : 2008
Degree: 碩士
Abstract: 由於資訊的進步,在影像資料庫中累積了大量的影像。如何從這些影像中探勘出有價值的資訊,也越來越受到重視。因此,在本篇論文中我們提出一個有效率的探勘演算法——「CP9」,以找尋9DLT影像資料庫中封閉性樣式。在這個資料庫中每一張影像,皆以9DLT字串方式來表示。我們的方法可分為兩階段:第一階段,掃描整個資料庫找出長度為二的頻繁樣式。第二階段,我們利用長度為k的頻繁樣式,以及與它可結合的頻繁樣式產生出長度為k+1的頻繁樣式,然後重複執行第二階段的步驟直到不能找到任何的封閉性樣式為止。因為我們提出的可結合頻繁樣式與修剪策略可以刪去許多不必要的樣式與路徑,實驗結果顯示所提出的方法具有效率與擴充性,且它優於9DLT-Miner演算法。
With advances of information technology, enormous numbers of images have been accumulated in image databases. As a result, how to mine useful patterns from image databases has attracted more and more attention in recent years. Hence, in this thesis, we proposed an efficient and scalable algorithm, CP9, to mine the frequent closed pattern in a 9DLT database, where every image is represented by a 9DLT string. Our proposed algorithm consists of two phases. First, we scan the database to find all frequent 2-patterns, and build an imageset for each frequent 2-pattern. Then, we use a frequent k-pattern to find its super (k+1)–patterns by joining the patterns in its joinable class in a depth-first search (DFS) manner where k>=2. The second phase is recursively repeated until no more frequent closed patterns can be found. Since our proposed algorithm uses the joinable class to localize the pattern generations and pruning properties to remove many frequent but non-closed patterns, it can efficiently mine frequent closed patterns in 9DLT image databases. The experimental results show that our proposed algorithm is efficient and scalable, and it outperforms the 9DLT-Miner algorithm.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37298
Fulltext Rights: 有償授權
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
609.67 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved