Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭
dc.contributor.authorWei-Ting Wangen
dc.contributor.author汪韋廷zh_TW
dc.date.accessioned2021-06-13T15:23:44Z-
dc.date.available2008-08-05
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-20
dc.identifier.citation[1] R. Agrawal, C. Aggarwal, and V.V.V. Prasad, Depth first generation of long patterns, Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, USA, 2000, pp. 108-188.
[2] R. J. Bayardo, Efficiently mining long patterns from databases, Proceedings of ACM SIGMOD Conference Management of Data, Seattle, Washington, USA, 2000, pp. 85-93.
[3] H. Blum, R.N. Nagel, Shape description using weighted symmetric axis features, Pattern Recognition 10 (3), 1978, pp. 167-180.
[4] C. C. Chang, and S. Y. Lee, Retrieval of symbolic pictures, Journal of Information Science and Engineering 7 (3), 1991, pp. 405-422.
[5] S. K. Chang, Q. Y. Shi, and C. W. Yan, Iconic indexing by 2-D strings, IEEE Transactions on Pattern Analysis and Machine Intelligence 9 (3), 1987, pp. 413-427.
[6] Y. K. Chan, and C. C. Chang, Spatial similarity retrieval in video databases, Journal of Visual Communication and Image Representation 12, 2001, pp. 107-122.
[7] M. Dai, P. Baylou, M. Najim, An efficient algorithm for computation of shape moments from run-length codes or chain codes, Pattern Recognition 25 (10), 1992, pp. 1119-1128.
[8] W. Grosky, P. Stanchev, An image data model, in advances in visual information systems, Lecture Notes in Computer Science 1929, 2000, pp. 14-25.
[9] J. Han, J. Wang, Y. Lu, and P. Tzvetkov, Mining top-k frequent closed patterns without minimum support, Proceedings of the IEEE International Conference on Data Mining, Maebashi Japan, 2000, pp. 211-218.
[10] J. Han, and M. Kamber, Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann, San Francisco, USA, 2006.
[11] W. Hsu, J. Dai, and M. Lee, Mining viewpoint patterns in image databases, Proceedings of the Ninth ACM SIGKEE International Conference on Knowledge Discovery and Data Mining, Washington DC, USA, 2003, pp. 553-558.
[12] W. Hsu, M. L. Lee, J. Zhang, Image mining: trends and developments, Journal of Intelligent Information Systems Archive 19, 2002, pp. 7-23.
[13] W. Hsu, J. Zhang, M. L. Lee, Image mining: issues, frameworks and techniques, Journal of Intelligent Information Systems 19 (1), 2002, pp.7-23.
[14] M.K. Hu, Visual pattern recognition by moment invariants, Information Theory, IEEE Transactions 8 (2), 1962, pp. 179-187.
[15] P.W. Huang, C.H. Lee, Image database design based on 9D-SPA representation for spatial relations, IEEE Transactions on Knowledge and Data Engineering 16 (12), 2004, pp. 1486-1496.
[16] A. Kvist, A. Lindstrom, M. Green, T. Piersma, and G. H. Visser, Carrying large fuel loads during sustained bird flight is cheaper than expected, Nature 413, 2001, pp. 730 - 732.
[17] A. J.T. Lee, H.P. Chiu, 2D Z-string: A new spatial knowledge representation for image databases, Pattern Recognition Letters 24 (16), 2003, pp. 3015-3026.
[18] A. J.T. Lee, R.W. Hong, W.M. Ko, W.K. Tsao, and H.H. Lin, Mining spatial association rules in image databases, Journal of Information Science 177 (7), 2007, pp. 1593-1068.
[19] C. Lucchese, S. Orlando, and R. Perego, Fast and memory efficient mining of frequent closed itemsets, IEEE Transactions on Knowledge and Data Engineering 18 (1), 2006, pp. 21-36.
[20] B. Manjuanth, and W. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (8), 1996, pp. 837-842.
[21] B. M. Mehtrea, M. S. Kankanhallib, and W. F. Leec, Shape measures for content based image retrieval: A comparison, Information Processing & Management 33 (3), 1997, pp. 319-337.
[22] S. Messelodi, C.M. Modena, M. Zanin, A computer vision system for the detection and classification of vehicles at urban road intersections, Pattern Analysis Application 8, 2005, pp. 17-31.
[23] J. Pei, J. Han, and R. Mao, CLOSET: an efficient algorithm for mining frequent closed itemsets, Proceedings of the 5th ACM-SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Dallas, USA, 2000, pp. 11-20.
[24] J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto, PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth, Proceedings of the 17th IEEE International Conference on Data Engineering, Heidelberg, Germany, 2001, pp. 215-224.
[25] I. Sethi, I. Coman, B. Day, F. Jiang, D. Li, J. Segovia-Juarez, G. Wei, and B. You, Color-WISE: A system for image similarity retrieval using color, Proceedings of SPIE Storage and Retrieval for Image and Video Databases 3312, 1998, pp. 140-149.
[26] R. Srikant, and R. Agrawal, Fast algorithms for mining association rules, Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, 1994, pp. 487-499.
[27] X.F. Tong, H.Q. Lu, and Q.S. Liu, An effective and fast soccer ball detection and tracking method, Proceeding of the 17th International Conference on Pattern Recognition, 2004, pp. 795-798.
[28] J.D. Villasenor, B. Belzer, J. Liao, Wavelet filter evaluation for image compression, IEEE Transactions on Image Processing 4 (8), 1995, pp. 1053-1060.
[29] H. Weimerskirch, J. Martin, Y. Clerquin, P. Alexandre, and S. Jiraskova, Energy saving in flight formation, Nature 413, 2001, pp. 697 - 698.
[30] J. Wang, J. Han, and J. Pei, CLOSET+: searching for the best strategies for mining frequent closed itemsets, Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 2003, pp. 236-245.
[31] L. Wang, G. Leedham, and D. S. Cho, Minutiae feature analysis for infrared hand vein pattern biometrics, Pattern Recognition 41 (3), 2008, pp. 920-929.
[32] Y. Wang, Image indexing and similarity retrieval based on spatial relationship model, Information Sciences 154 (1), 2003, pp. 39-58.
[33] M. J. Zaki, and C. Hsiao, Efficient algorithms for mining closed itemsets and their lattice structure, IEEE Transactions on Knowledge and Data Engineering 17 (4), 2005, pp. 462-478.
[34] D.Q. Zhang, S.F. Chang, Detecting image near-duplicate by stochastic attributed relational graph matching with learning, Proceedings of the 12th annual ACM international conference on Multimedia, New York, NY, USA, 2004, pp. 877-884.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/37298-
dc.description.abstract由於資訊的進步,在影像資料庫中累積了大量的影像。如何從這些影像中探勘出有價值的資訊,也越來越受到重視。因此,在本篇論文中我們提出一個有效率的探勘演算法——「CP9」,以找尋9DLT影像資料庫中封閉性樣式。在這個資料庫中每一張影像,皆以9DLT字串方式來表示。我們的方法可分為兩階段:第一階段,掃描整個資料庫找出長度為二的頻繁樣式。第二階段,我們利用長度為k的頻繁樣式,以及與它可結合的頻繁樣式產生出長度為k+1的頻繁樣式,然後重複執行第二階段的步驟直到不能找到任何的封閉性樣式為止。因為我們提出的可結合頻繁樣式與修剪策略可以刪去許多不必要的樣式與路徑,實驗結果顯示所提出的方法具有效率與擴充性,且它優於9DLT-Miner演算法。zh_TW
dc.description.abstractWith advances of information technology, enormous numbers of images have been accumulated in image databases. As a result, how to mine useful patterns from image databases has attracted more and more attention in recent years. Hence, in this thesis, we proposed an efficient and scalable algorithm, CP9, to mine the frequent closed pattern in a 9DLT database, where every image is represented by a 9DLT string. Our proposed algorithm consists of two phases. First, we scan the database to find all frequent 2-patterns, and build an imageset for each frequent 2-pattern. Then, we use a frequent k-pattern to find its super (k+1)–patterns by joining the patterns in its joinable class in a depth-first search (DFS) manner where k>=2. The second phase is recursively repeated until no more frequent closed patterns can be found. Since our proposed algorithm uses the joinable class to localize the pattern generations and pruning properties to remove many frequent but non-closed patterns, it can efficiently mine frequent closed patterns in 9DLT image databases. The experimental results show that our proposed algorithm is efficient and scalable, and it outperforms the 9DLT-Miner algorithm.en
dc.description.provenanceMade available in DSpace on 2021-06-13T15:23:44Z (GMT). No. of bitstreams: 1
ntu-97-R95725050-1.pdf: 624297 bytes, checksum: 490c9e2f9e46693e7fc6fbc0678b89f9 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTABLE OF CONISNTS i
LIST OF FIGURES ii
LIST OF TABLES iii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 PROBLEM DEFINITION 4
CHAPTER 3 OUR PROPOSED METHOD 7
3.1 PI-TREE AND PI-PAIR 7
3.2 PRUNING STRATEGIES 9
3.3 THE CP9 ALGORITHM 13
CHAPTER 4 PERFORMANCE EVALUATION 18
4.1 EXPERIMENTS ON SYNTHETIC DATA 18
4.2 EXPERIMENTS ON REAL DATA 22
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 25
REFERENCES 26
dc.language.isoen
dc.title9DLT影像資料庫中封閉性樣式之資料探勘zh_TW
dc.titleMining Closed Patterns in 9DLT Image Databasesen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉敦仁,陳彥良
dc.subject.keyword資料探勘,影像探勘,封閉性樣式,空間關係,9DLT字串,zh_TW
dc.subject.keyworddata mining,image mining,closed pattern,spatial relation,9DLT string,en
dc.relation.page28
dc.rights.note有償授權
dc.date.accepted2008-07-22
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
609.67 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved