Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36628
Title: 協作限制處理機制結合演化式演算法解決限制多目標最佳化問題
A Collaborative Constraint Handling Mechanism with Evolutionary Algorithm for Constrained Multiobjective Optimization
Authors: Min-Nan Hsieh
謝旻男
Advisor: 傅立成
Co-Advisor: 蔣宗哲
Keyword: 多目標演化式演算法,限制處理,差異式演化,限制多目標最佳化,限制最佳化,多目標最佳化,
Multiobjective Evolutionary Algorithm,Constraint Handling,Differential Evolution,Constrained Multiobjective Optimization,Constrained Optimization,Multiobjective Optimization,
Publication Year : 2011
Degree: 碩士
Abstract: 限制多目標最佳化問題是一種在現實中常常能夠見到的問題,例如排程問題與工程上的設計問題。面對這樣子的問題,我們往往需要同時解決多個互相衝突的目標並且求出來的解必須要滿足多種不同的限制。為此,我們提出結合協作限制處理機制結合多目標演算法來解決限制多目標的問題。協作限制處理機制結合了ε-比較(ε-comparison)法,懲罰(penalty)法,以及一個外部檔案紀錄(external archive)。不同於傳統的ε-比較法,我們給予每個限制一個獨立的ε值並且根據限制違反程度來控制它。懲罰法則用來處理限制違反程度超過ε值的區域,使搜尋能朝向ε-合理(feasible)區前進。外部檔案紀錄(external archive)用以維持搜尋過程中的有用個體(individual)。我們提出的演算法將建構在一個知名的多目標演化式演算法架構上,MOEA/D-DRA,並且調整繁殖運算子(reproduction operator)以接受來自於外部檔案紀錄(external archive)的有用資訊。實驗上,我們把所提出的演算法與NSGA-II以及一個利用自適性懲罰函數改進的版本在二十五個公開的限制多目標最佳化問題上作比較。
In this thesis, a constrained multiobjective optimization problem is addressed. A constrained multiobjective optimization problem involves many conflicting objectives to be optimized simultaneously and many constraints to be satisfied. A constrained multiobjective algorithm which incorporates a collaborative constraint handling mechanism is proposed to solve these problems. The collaborative constraint handling mechanism combines the ε-comparison method, penalty method, and an external archive. Unlike original ε-comparison method, we set an individual ε-value to each constraint and control it by the amount of violation. The penalty method deals with the region where constraint violation exceeds the ε-value and guides the search toward the ε-feasible region. The external archive maintains the useful individuals during the search. The proposed algorithm is based on a well-known framework of multiobjective evolutionary algorithms, MOEA/D-DRA, and the reproduction operator is modified to incorporate the useful information from the external archive. Performance of the proposed algorithm is compared with NSGA-II and an improved version with a adaptive penalty function on twenty-five public constrained multiobjective optimization problem instances.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36628
Fulltext Rights: 有償授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
2.35 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved