Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成
dc.contributor.authorMin-Nan Hsiehen
dc.contributor.author謝旻男zh_TW
dc.date.accessioned2021-06-13T08:08:30Z-
dc.date.available2015-09-01
dc.date.copyright2011-09-21
dc.date.issued2011
dc.date.submitted2011-08-20
dc.identifier.citation[1] S. Das and P. Suganthan, “Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems,” Department of Electronics and Telecom-munication Engineering, Technical Report, 2011.
[2] K. Deb, Multiobjective Optimization Using Evolutionary Algorithms. Chichester, U.K.: Wiley, 2001.
[3] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint handling in multiobjective evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 3, pp. 514-525, 2009.
[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
[5] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712-731, 2007.
[6] H. Li and Q. Zhang, 'Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II,' IEEE Transactions on Evolutionary Computation, vol. 13, pp. 284-302, 2009.
[7] Q. Zhang, W. Liu, and H. Li, 'The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances,' in Proceedings of IEEE Congress on Evolutionary Computation, pp. 203-208, 2009.
[8] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems. Springer-Verlag New York Inc, 2007.
[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman, 1989.
[10] T. Takahama and S. Sakai, 'Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites,' in Proceedings of IEEE Congress on Evolutionary Computation, pp. 1-8, 2006.
[11] H. Beyer and H. Schwefel, “Evolution strategies–A comprehensive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.
[12] M. Dorigo and T. Stützle, Ant Colony Optimization. The MIT press, 2004.
[13] J. Kennedy and R. C. Eberhart, Swarm Intelligence. Morgan Kaufmann, 2001.
[14] D. Dasgupta, Artificial Immune Systems and Their Applications, Springer-Verlag, 1999.
[15] M. Mitchell, An Introduction to Genetic Algorithms. Bradford Books, 1996.
[16] J. Holland, Adaptation in Natural and Artificial Systems. The MIT Press, 1975.
[17] L. Booker, “Intelligent behavior as an adaptation to the task environment,” Ph.D. dissertation, University of Michigan Ann Arbor, 1982.
[18] J. Baker, “Reducing bias and inefficiency in the selection algorithm,” in Proceedings of the International Conference on Genetic Algorithms and Their Application, Cambridge, MA, USA, 1987, pp. 14–21.
[19] S. Koziel and Z. Michalewicz, “Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization,” Evolutionary Computation, vol. 7, no. 1, pp. 19-44, 1999.
[20] C. A. Coello Coello, 'Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art,' Computer Methods in Applied Mechanics and Engineering, vol. 191, pp. 1245-1287, 2002.
[21] Z. Michalewicz and C. Z. Janikow, 'Handling constraints in genetic algorithms,' Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 151-157, 1991.
[22] D. W. Coit, A. E. Smith, and D. M. Tate, “Adaptive penalty methods for genetic optimization of constrained combinatorial problems,” INFORMS Journal on Computing, vol. 8, no. 2, pp. 173-182, 1996.
[23] S. B. Hamida and M. Schoenauer, ”ASCHEA: New results using adaptive segregational constraint handling,” in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp. 884-889, 2002.
[24] C. A. C. Coello, “Use of a self-adaptive penalty approach for engineering optimization problems,” Computers in Industry, vol. 41, no. 2, pp. 113-127, 2000.
[25] A. E. Eiben, R. Hinterding, and Z. Michalewicz, 'Parameter control in evolutionary algorithms,' IEEE Transactions on Evolutionary Computation, vol. 3, pp. 124-141, 1999.
[26] B. Tessema and G. G. Yen, “A self adaptive penalty function based algorithm for constrained optimization,” in Proceedings of IEEE Congress on Evolutionary Computation, pp. 246-253, 2006.
[27] K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2-4, pp. 311-338, 2000.
[28] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 3, pp. 284-294, 2000.
[29] T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 35, no. 2, pp. 233-243, 2005.
[30] T. Takahama and S. Sakai, “Constrained optimization by applying the α constrained method to the nonlinear simplex method with mutations,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 5, pp. 437-451, 2005.
[31] T. Takahama and S. Sakai, “Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation,” in Proceedings of IEEE Congress on Evolutionary Computation, 2010.
[32] C. A. C. Coello, “Treating constraints as objectives for single-objective evolutionary optimization,” Engineering Optimization, vol. 32, no. 3, pp. 275-308, 2000.
[33] Z. Cai and Y. Wang, “A multiobjective optimization-based evolutionary algorithm for constrained optimization,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 658-675, 2006.
[34] H. K. Singh, T. Ray, and W. Smith, “Performance of infeasibility empowered memetic algorithm for CEC 2010 Constrained Optimization Problems,” in Proceedings of IEEE Congress on Evolutionary Computation, 2010.
[35] J. J. Liang, Zhigang Shang, and Zhihui Li, “Coevolutionary comprehensive learning particle swarm optimizer,” in Proceedings of IEEE Congress on Evolutionary Computation, 2010.
[36] R. Mallipeddi and P. N. Suganthan, “Ensemble of constraint handling techniques,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 4, pp. 561-579, 2010.
[37] R. Mallipeddi and P. N. Suganthan, “Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems,” in Proceedings of IEEE Congress on Evolutionary Computation, 2010.
[38] S. M. Elsayed, R. A. Sarker, and D. L. Essam, 'Multi-operator based evolutionary algorithms for solving constrained optimization problems,' Computers & Operations Research, vol. 38, pp. 1877-1896, 2011.
[39] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proceedings of the International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 1985, pp. 93–100.
[40] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization,” in Proceedings of the International Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, 1993, pp. 416–423.
[41] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic algorithm for multiobjective optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Orlando, FL, USA, 1994, pp. 82–87.
[42] J. D. Knowles and D.W. Corne, “Approximating the nondominated front using the Pareto archived evolution strategy,” Evolutionary Computation, vol. 8, pp. 149–172, 2000.
[43] D.W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “PESA-II: Region-based selection in evolutionary multiobjective optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA,USA, 2001, pp. 283–290.
[44] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 6, pp. 565–588, 2001.
[45] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” in Proceedings of EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control With Applications to Industrial Problems, 2001.
[46] A. Toffolo and E. Benini, “Genetic diversity as an objective in multi-objective evolutionary algorithms,” Evolutionary Computation, vol. 11, no. 2, pp. 151–167, 2003.
[47] R. Storn and K. Price, “Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, pp. 341-359, 1995
[48] S. Das and P. N. Suganthan, 'Differential evolution: A survey of the state-of-the-art,' IEEE Transactions on Evolutionary Computation, vol. 15, pp. 4-31, 2011.
[49] C.S. Chang, D.Y. Xu, and H.B. Quek, 'Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system,' IEEE Proceedings on Electric Power Applications, vol. 146, pp. 577-583, 1999.
[50] H. A. Abbass, et al., 'PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems,' in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, pp. 971-978, 2001.
[51] H. A. Abbass, 'The self-adaptive Pareto differential evolution algorithm,' in Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp. 831-836, 2002.
[52] F. Xue, A. C. Sanderson, R. J. Graves, 'Pareto-based multi-objective differential evolution,' in Proceedings of IEEE Congress on Evolutionary Computation, vol.2, pp. 862-869, 2003
[53] T. Robič and B. Filipič, 'DEMO: Differential evolution for multiobjective optimization,' in Evolutionary Multi-Criterion Optimization. vol. 3410, C. A. Coello Coello, et al., Eds., ed: Springer Berlin / Heidelberg, pp. 520-533, 2005.
[54] K. Miettinen, Nonlinear Multiobjective Optimization. Norwell, MA: Kluwer, 1999.
[55] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method for generating Pareto optimal points in multicriteria optimization problems,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 631–657, 1998.
[56] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I. A unified formulation,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 28, no. 1, pp. 26-37, 1998.
[57] T. Ray, T. Kang, and S.K. Chye, “An evolutionary algorithm for constrained optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 771-777, 2000.
[58] S. Kukkonen and J. Lampinen. Comparison of Generalized Differential Evolution algorithm to other multiobjective evolutionary algorithms. In Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering, pp. 445, 2004.
[59] S. Kukkonen and J. Lampinen, 'An Extension of Generalized Differential Evolution for Multi-objective Optimization with Constraints,' in Parallel Problem Solving from Nature - PPSN VIII. vol. 3242, X. Yao, et al., Eds., ed: Springer Berlin / Heidelberg, pp. 752-761, 2004.
[60] S. Kukkonen and J. Lampinen, 'GDE3: the third evolution step of generalized differential evolution,' in Proceedings of IEEE Congress on Evolutionary Computation, vol.1, pp. 443-450, 2005.
[61] L. Y. Tseng and C. Chen, “Multiple trajectory search for unconstrained/constrained multi-Objective optimization,” in Proceedings of IEEE Congress on Evolutionary Computation, pp. 1951-1958, 2009.
[62] H. K. Singh, A. Isaacs, T. Ray, and W. Smith, ”A simulated annealing algorithm for constrained multi-objective optimization,” in Proceedings of IEEE Congress on Evolutionary Computation, pp. 1655-1662, 2008.
[63] B. Y. Qu and P. N. Suganthan, “Constrained multi-objective optimization algorithm with ensemble of constraint handling methods”, Engineering Optimization, Accepted.
[64] K. Deb, A. Sinha, and S. Kukkonen, “Multi-objective test problems, linkages, and evolutionary methodologies,” in Proceedings of Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 2006, pp. 1141–1148.
[65] A. W. Iorio and X. Li, “Solving rotated multi-objective optimization problems using differential evolution,” in Proceedings of Joint Australian Conference Artificial Intelligence, Cairns, Australia, 2004, pp. 861–872.
[66] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for multi-objective evolutionary optimization,” in Evolutionary Multi-Criterion Optimization, vol. 1993, ed: Springer Berlin / Heidelberg, pp. 284-298, 2001.
[67] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, 'Scalable test problems for evolutionary multiobjective optimization,' in Evolutionary Multiobjective Optimization, Eds., ed: Springer Berlin Heidelberg, pp. 105-145, 2005
[68] K. Deb, A. Pratap, and S. Moitra, 'Mechanical component design for multiple objectives using elitist non-dominated sorting GA,' in Parallel Problem Solving from Nature PPSN VI, vol. 1917, ed: Springer Berlin / Heidelberg, pp. 859-868, 2000.
[69] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” in Complex System, vol. 9, pp. 115–148, 1995.
[70] J. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance assessment of stochastic multiobjective optimizers,” Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 2006.
[71] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca, “Performance assessment of multiobjective optimizers: An analysis and review,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117-132, 2003.
[72] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari,“Multiobjective optimization test instances for the CEC 2009 special session and competition,” University of Essex and Nanyang Technological University, Technical Report. CES-487, 2008.
[73] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945-958, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/36628-
dc.description.abstract限制多目標最佳化問題是一種在現實中常常能夠見到的問題,例如排程問題與工程上的設計問題。面對這樣子的問題,我們往往需要同時解決多個互相衝突的目標並且求出來的解必須要滿足多種不同的限制。為此,我們提出結合協作限制處理機制結合多目標演算法來解決限制多目標的問題。協作限制處理機制結合了ε-比較(ε-comparison)法,懲罰(penalty)法,以及一個外部檔案紀錄(external archive)。不同於傳統的ε-比較法,我們給予每個限制一個獨立的ε值並且根據限制違反程度來控制它。懲罰法則用來處理限制違反程度超過ε值的區域,使搜尋能朝向ε-合理(feasible)區前進。外部檔案紀錄(external archive)用以維持搜尋過程中的有用個體(individual)。我們提出的演算法將建構在一個知名的多目標演化式演算法架構上,MOEA/D-DRA,並且調整繁殖運算子(reproduction operator)以接受來自於外部檔案紀錄(external archive)的有用資訊。實驗上,我們把所提出的演算法與NSGA-II以及一個利用自適性懲罰函數改進的版本在二十五個公開的限制多目標最佳化問題上作比較。zh_TW
dc.description.abstractIn this thesis, a constrained multiobjective optimization problem is addressed. A constrained multiobjective optimization problem involves many conflicting objectives to be optimized simultaneously and many constraints to be satisfied. A constrained multiobjective algorithm which incorporates a collaborative constraint handling mechanism is proposed to solve these problems. The collaborative constraint handling mechanism combines the ε-comparison method, penalty method, and an external archive. Unlike original ε-comparison method, we set an individual ε-value to each constraint and control it by the amount of violation. The penalty method deals with the region where constraint violation exceeds the ε-value and guides the search toward the ε-feasible region. The external archive maintains the useful individuals during the search. The proposed algorithm is based on a well-known framework of multiobjective evolutionary algorithms, MOEA/D-DRA, and the reproduction operator is modified to incorporate the useful information from the external archive. Performance of the proposed algorithm is compared with NSGA-II and an improved version with a adaptive penalty function on twenty-five public constrained multiobjective optimization problem instances.en
dc.description.provenanceMade available in DSpace on 2021-06-13T08:08:30Z (GMT). No. of bitstreams: 1
ntu-100-R98922094-1.pdf: 2401641 bytes, checksum: 91f8e728bb526b7c04f36510384b8984 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Description 3
1.2.1 Multiobjective Optimization Problems (MOPs) 3
1.2.2 Constrained Optimization Problems (COPs) 4
1.2.3 Constrained Multiobjective Optimization Problems (CMOPs) 5
1.3 Contribution 6
1.4 Organization 7
Chapter 2 Preliminaries 8
2.1 Evolutionary Algorithm 8
2.2 Evolutionary Algorithm for COPs 12
2.3 Evolutionary Algorithm for MOPs 19
2.4 Evolutionary Algorithm for CMOPs 23
Chapter 3 A Collaborative Constraint Handling Mechanism with Evolutionary Algorithm for Constrained Multiobjective Optimization 31
3.1 Overview 31
3.1.1 MOEA/D-DRA 32
3.1.2 MOEA/D-CCHM 36
3.2 Basic Collaborative Constraint Handling Mechanism 39
3.2.1 Modified ε-comparison Method 39
3.2.2 Penalty Method 42
3.2.3 External Archive 44
3.3 Advanced Collaborative Constraint Handling Mechanism - Decomposition and Neighborhood 47
3.4 The Proposed MOEA/D-CCHM 51
3.4.1 Chromosome Encoding and Decoding 51
3.4.2 Initialization 52
3.4.3 Dynamic Resource Allocation 52
3.4.4 Mating Selection 53
3.4.5 Crossover 54
3.4.6 Mutation 55
3.4.7 Environmental Selection 56
3.4.8 Update external archive 56
3.4.9 Update ε-value 57
3.4.10 Stop Criterion 57
3.5 Summary 58
Chapter 4 Experiments and Results 59
4.1 Benchmark Instances 59
4.2 Benchmark Algorithms 62
4.3 Parameter Setting 66
4.4 Performance Evaluation 68
4.5 Experimental Results 69
4.6 Discussions 79
4.6.1 Experiment 1: NSGA-II and WYT vs. NSGA-II-CCHM 79
4.6.2 Experiment 2: MOEA/D-SF and MOEA/D-AP vs. MOEA/D-CCHM 81
4.6.3 Experiment 3: WYT vs. MOEA/D-CCHM 83
4.6.4 Experiment 4: the comparison of all algorithms with respect to IGD 84
4.6.5 Experiment 5: NSGA-II-CCHM vs. NSGA-II-EC 85
4.6.6 Experiment 6: Advanced CCHM vs. Basic CCHM 86
Chapter 5 Conclusions and Future Work 87
REFERENCES 89
dc.language.isoen
dc.subject多目標最佳化zh_TW
dc.subject多目標演化式演算法zh_TW
dc.subject限制處理zh_TW
dc.subject差異式演化zh_TW
dc.subject限制多目標最佳化zh_TW
dc.subject限制最佳化zh_TW
dc.subjectDifferential Evolutionen
dc.subjectMultiobjective Optimizationen
dc.subjectConstrained Optimizationen
dc.subjectConstrained Multiobjective Optimizationen
dc.subjectMultiobjective Evolutionary Algorithmen
dc.subjectConstraint Handlingen
dc.title協作限制處理機制結合演化式演算法解決限制多目標最佳化問題zh_TW
dc.titleA Collaborative Constraint Handling Mechanism with Evolutionary Algorithm for Constrained Multiobjective Optimizationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor蔣宗哲
dc.contributor.oralexamcommittee曹承礎,林守德,于天立
dc.subject.keyword多目標演化式演算法,限制處理,差異式演化,限制多目標最佳化,限制最佳化,多目標最佳化,zh_TW
dc.subject.keywordMultiobjective Evolutionary Algorithm,Constraint Handling,Differential Evolution,Constrained Multiobjective Optimization,Constrained Optimization,Multiobjective Optimization,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2011-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved