Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34027
Title: 關於短腳蜘蛛圖的Erdös-Sós猜想
The Erdös-Sós Conjecture for Short-leg Spiders
Authors: Chun-Ting Lee
李俊廷
Advisor: 張鎮華
Keyword: 蜘蛛圖,Erd&ouml,s-S&oacute,s猜想,
spiders,Erd&ouml,s-S&oacute,s conjecture,
Publication Year : 2006
Degree: 碩士
Abstract: 圖論中有關極值理論的 Erdos-Gallai 定理: n 個頂點的圖如果包含超過 (k-1)n/2 個邊,則其必包含一個 k 邊的路。根據這項結論, Erdos以及 Sos 猜測在相同的條件下,這樣的圖將會包含任何一個 k 邊的樹。蜘蛛圖,一種特別的樹,最多只能有一個頂點的度超過 2,這樣的頂點我們稱之為中心,其他的頂點的度為 1 或 2。一條從中心到度為 1 的頂點之路稱為蜘蛛圖的一隻腳。因此,
一條路即為一個一隻腳或兩隻腳的蜘蛛圖。在這篇論文中,我們將證明如果一 n 點的圖有超過 (k-1)n/2 個邊,那麼他將包含所有一隻腳長度為 5,其餘的腳長度都是 5 以下的 k 邊蜘蛛圖。另外,我們也證明如果一個 n 點的圖有超過 (k-1)n/2
個邊,且他有漢米爾頓圈,則其必包含任何 k 邊的蜘蛛圖。
A classical result on extremal graph theory is the Erd˝os-Gallai Theorem: if a graph with n vertices has more than (k−1)n/2 edges, then it contains a path of k edges. Motivated by the result, Erd˝os and S´os conjectured that under the same condition, the graph should contain
every tree of k edges. A spider is a tree in which each vertex has degree 1 or 2, except for possibly one vertex, called the center of the spider. A leg of a spider is a path from the center to a vertex of degree one.
Thus, a path is a spider of 1 or 2 legs. In this thesis, we prove that if a graph with n vertices has more than (k−1)n/2 edges, then it contains every k-edge spider whose legs are of length at most 4 except exactly one is of length 5. In addition, we also prove that a Hamiltonian graph with n vertices and more than (k−1)n/2 edges contains every spider of k edges.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34027
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
226.06 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved