請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34027完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張鎮華 | |
| dc.contributor.author | Chun-Ting Lee | en |
| dc.contributor.author | 李俊廷 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:52:00Z | - |
| dc.date.available | 2006-07-24 | |
| dc.date.copyright | 2006-07-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-04 | |
| dc.identifier.citation | [1] S. Brandt and E. Dobson, The Erd˝os-S´os conjecture for graphs of girth 5, Discrete Math., 150 (1996), 411-414.
[2] P. Erd˝os, Extreme problems in graph theory, Theory of Graphs and its Applications, (M. Fiedler, eds.) Academic Press, 1965, 29-36. [3] P. Erd˝os and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 10 (1959), 337-356 [4] G. Fan and L. Sun, The Erd˝os-S´os conjecture for spiders, manuscript (2005) [5] J. F. Sacl´e and M. Wo´zniak, The Erd˝os-S´os conjecture for graphs without C4, J. Combinatorial Theory, Series B, 70 (1997), 367-372. [6] A. F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989), 207-215. [7] M. Wo´zniak, On the Erd˝os-S´os conjecture, J. Graph Theory 21 (1996), 229-234. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34027 | - |
| dc.description.abstract | 圖論中有關極值理論的 Erdos-Gallai 定理: n 個頂點的圖如果包含超過 (k-1)n/2 個邊,則其必包含一個 k 邊的路。根據這項結論, Erdos以及 Sos 猜測在相同的條件下,這樣的圖將會包含任何一個 k 邊的樹。蜘蛛圖,一種特別的樹,最多只能有一個頂點的度超過 2,這樣的頂點我們稱之為中心,其他的頂點的度為 1 或 2。一條從中心到度為 1 的頂點之路稱為蜘蛛圖的一隻腳。因此,
一條路即為一個一隻腳或兩隻腳的蜘蛛圖。在這篇論文中,我們將證明如果一 n 點的圖有超過 (k-1)n/2 個邊,那麼他將包含所有一隻腳長度為 5,其餘的腳長度都是 5 以下的 k 邊蜘蛛圖。另外,我們也證明如果一個 n 點的圖有超過 (k-1)n/2 個邊,且他有漢米爾頓圈,則其必包含任何 k 邊的蜘蛛圖。 | zh_TW |
| dc.description.abstract | A classical result on extremal graph theory is the Erd˝os-Gallai Theorem: if a graph with n vertices has more than (k−1)n/2 edges, then it contains a path of k edges. Motivated by the result, Erd˝os and S´os conjectured that under the same condition, the graph should contain
every tree of k edges. A spider is a tree in which each vertex has degree 1 or 2, except for possibly one vertex, called the center of the spider. A leg of a spider is a path from the center to a vertex of degree one. Thus, a path is a spider of 1 or 2 legs. In this thesis, we prove that if a graph with n vertices has more than (k−1)n/2 edges, then it contains every k-edge spider whose legs are of length at most 4 except exactly one is of length 5. In addition, we also prove that a Hamiltonian graph with n vertices and more than (k−1)n/2 edges contains every spider of k edges. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:52:00Z (GMT). No. of bitstreams: 1 ntu-95-R93221028-1.pdf: 231488 bytes, checksum: 52e9e01481baab6242e946bd9a74c235 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
Abstract in Chinese i Abstract in English ii 1 Introduction 1 2 Spiders in Hamiltonian Cycle 4 3 Short-leg Spiders 5 References 13 | |
| dc.language.iso | en | |
| dc.subject | s猜想 | zh_TW |
| dc.subject | 蜘蛛圖 | zh_TW |
| dc.subject | Erd&ouml | zh_TW |
| dc.subject | s-S&oacute | zh_TW |
| dc.subject | spiders | en |
| dc.subject | s conjecture | en |
| dc.subject | s-S&oacute | en |
| dc.subject | Erd&ouml | en |
| dc.title | 關於短腳蜘蛛圖的Erdös-Sós猜想 | zh_TW |
| dc.title | The Erdös-Sós Conjecture for Short-leg Spiders | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏經和,廖勝強,郭大衛,葉鴻國 | |
| dc.subject.keyword | 蜘蛛圖,Erd&ouml,s-S&oacute,s猜想, | zh_TW |
| dc.subject.keyword | spiders,Erd&ouml,s-S&oacute,s conjecture, | en |
| dc.relation.page | 13 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 226.06 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
