Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34027
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張鎮華
dc.contributor.authorChun-Ting Leeen
dc.contributor.author李俊廷zh_TW
dc.date.accessioned2021-06-13T05:52:00Z-
dc.date.available2006-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-04
dc.identifier.citation[1] S. Brandt and E. Dobson, The Erd˝os-S´os conjecture for graphs of girth 5, Discrete Math., 150 (1996), 411-414.
[2] P. Erd˝os, Extreme problems in graph theory, Theory of Graphs and its Applications, (M. Fiedler, eds.) Academic Press, 1965, 29-36.
[3] P. Erd˝os and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 10 (1959), 337-356
[4] G. Fan and L. Sun, The Erd˝os-S´os conjecture for spiders, manuscript (2005)
[5] J. F. Sacl´e and M. Wo´zniak, The Erd˝os-S´os conjecture for graphs without C4, J. Combinatorial Theory, Series B, 70 (1997), 367-372.
[6] A. F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989), 207-215.
[7] M. Wo´zniak, On the Erd˝os-S´os conjecture, J. Graph Theory 21 (1996), 229-234.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34027-
dc.description.abstract圖論中有關極值理論的 Erdos-Gallai 定理: n 個頂點的圖如果包含超過 (k-1)n/2 個邊,則其必包含一個 k 邊的路。根據這項結論, Erdos以及 Sos 猜測在相同的條件下,這樣的圖將會包含任何一個 k 邊的樹。蜘蛛圖,一種特別的樹,最多只能有一個頂點的度超過 2,這樣的頂點我們稱之為中心,其他的頂點的度為 1 或 2。一條從中心到度為 1 的頂點之路稱為蜘蛛圖的一隻腳。因此,
一條路即為一個一隻腳或兩隻腳的蜘蛛圖。在這篇論文中,我們將證明如果一 n 點的圖有超過 (k-1)n/2 個邊,那麼他將包含所有一隻腳長度為 5,其餘的腳長度都是 5 以下的 k 邊蜘蛛圖。另外,我們也證明如果一個 n 點的圖有超過 (k-1)n/2
個邊,且他有漢米爾頓圈,則其必包含任何 k 邊的蜘蛛圖。
zh_TW
dc.description.abstractA classical result on extremal graph theory is the Erd˝os-Gallai Theorem: if a graph with n vertices has more than (k−1)n/2 edges, then it contains a path of k edges. Motivated by the result, Erd˝os and S´os conjectured that under the same condition, the graph should contain
every tree of k edges. A spider is a tree in which each vertex has degree 1 or 2, except for possibly one vertex, called the center of the spider. A leg of a spider is a path from the center to a vertex of degree one.
Thus, a path is a spider of 1 or 2 legs. In this thesis, we prove that if a graph with n vertices has more than (k−1)n/2 edges, then it contains every k-edge spider whose legs are of length at most 4 except exactly one is of length 5. In addition, we also prove that a Hamiltonian graph with n vertices and more than (k−1)n/2 edges contains every spider of k edges.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:52:00Z (GMT). No. of bitstreams: 1
ntu-95-R93221028-1.pdf: 231488 bytes, checksum: 52e9e01481baab6242e946bd9a74c235 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
Abstract in Chinese i
Abstract in English ii
1 Introduction 1
2 Spiders in Hamiltonian Cycle 4
3 Short-leg Spiders 5
References 13
dc.language.isoen
dc.subjects猜想zh_TW
dc.subject蜘蛛圖zh_TW
dc.subjectErd&oumlzh_TW
dc.subjects-S&oacutezh_TW
dc.subjectspidersen
dc.subjects conjectureen
dc.subjects-S&oacuteen
dc.subjectErd&oumlen
dc.title關於短腳蜘蛛圖的Erdös-Sós猜想zh_TW
dc.titleThe Erdös-Sós Conjecture for Short-leg Spidersen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏經和,廖勝強,郭大衛,葉鴻國
dc.subject.keyword蜘蛛圖,Erd&ouml,s-S&oacute,s猜想,zh_TW
dc.subject.keywordspiders,Erd&ouml,s-S&oacute,s conjecture,en
dc.relation.page13
dc.rights.note有償授權
dc.date.accepted2006-07-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
226.06 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved