Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
  • Help
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30026
Title: 多重生物指標最佳線性組合的嵌入估計法
Imputation Estimation Method for the Optimal Linear Composition of Multiple Biomarkers
Authors: Shr-Yan Huang
黃士晏
Advisor: 江金倉
Keyword: 接受器操作特性曲線,一致性,廣義線性模型,
AUC,consistency,generalized linear model,inverse probability weighting,imputation,markers,optimal linear composition score,ROC,selection probability,survival data.,
Publication Year : 2007
Degree: 碩士
Abstract: 針對多重生物指標在時間相關之ROC曲線分析,研究興趣通常在尋找合適之多重生物指標函
數以增進預測未來存活狀態的準確度。藉由對存活機率所建立之廣義線性模型,我們可導出
最佳生物指標函數為一線性組合函數。在不完整倖存資料結構下,我們利用嵌入條件期望值的方法
估計最佳線性組合中的係數。在此,我們推導所提出參數,$R!O!C_{t}$及$A!U!C_{t}$估計式之一致性。
更進一步,藉助模擬檢視估計式之有限樣本性質,並應用所提出之估計方法在心血管疾病的資料上
來改善預測心血管疾病死亡狀態及非限定因素死亡狀態的準確度。
In the time-dependent receiver operating characteristic (ROC) curve
analysis with several baseline markers, research interest focuses on
seeking an appropriate composition score of these potential markers
to improve the performance of individual markers in early prediction
of vital status. Under the validity of a generalized linear model
for the vital status at each time point within the study period, an
optimal linear composition score is shown to have a best ROC curve
among all functions of the markers. Based on censored survival data,
the inverse probability weighting approach was considered to
estimate the time-varying coefficients in the previous paper.
Without making assumption on the relationship between censoring time
and markers, we propose an imputation estimation method. The
consistency of the parameter estimators and the estimators of ROC
curve and area under ROC curve (AUC) at each time point is also
established in this article. However, the inverse probability
weighting approach will introduce a bias when the selection
probability is incorrectly specified in the estimating equations.
The performance of both estimation procedures are examined through a
class of numerical studies. Applying these methods to an angiography
cohort, our estimation procedures are shown to be useful in
predicting the vital outcomes.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30026
Fulltext Rights: 有償授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
233.57 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved