Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江金倉
dc.contributor.authorShr-Yan Huangen
dc.contributor.author黃士晏zh_TW
dc.date.accessioned2021-06-13T01:31:24Z-
dc.date.available2007-07-19
dc.date.copyright2007-07-19
dc.date.issued2007
dc.date.submitted2007-07-16
dc.identifier.citationBibliography
[1] Buckley, J. and James, I. (1979). Linear regression with censored data.
Biometrika. 66, 429-436.
[2] Dodd, L. E. and Pepe, M. S. (2003). Semiparametric regression for the area under
the receiver operating characteristic curve. Journal of the American Statistical
Association. 98, 409-417.
[3] Durrett, R. (2005). Probability: Theory and examples. Third edition. Duxbury.
[4] Foutz, R. V. (1977). On the unique consistent solution to the likelihood equations.
Journal of the American Statistical Association. 72, 147-148.
[5] Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC curves
for censored survival data and a diagnostic marker. Biometrics. 54, 124-135.
[6] Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution.
Annals of Mathematical Statistics. 19, 293-325.
[7] Lee, K. W. J., Hill, J. S., Walley, K. R., and Frohlich, J. J. (2006). Relative
value of multiple plasma biomarkers as risk factors for coronary artery disease
and death in an angiography cohort. Canadian Medical Association Journal.
174, 461-466.
[8] McIntosh, M. W. and Pepe, M. S. (2002). Combining several screening tests:
Optimality of the risk score. Biometrics. 58, 657-664.
[9] Zheng, Y., Cai, T., and Feng, Z. (2006). Application of the time-dependent ROC
curves for prognostic accuracy with multiple biomarkers. Biometrics. 62, 279-
287.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30026-
dc.description.abstract針對多重生物指標在時間相關之ROC曲線分析,研究興趣通常在尋找合適之多重生物指標函
數以增進預測未來存活狀態的準確度。藉由對存活機率所建立之廣義線性模型,我們可導出
最佳生物指標函數為一線性組合函數。在不完整倖存資料結構下,我們利用嵌入條件期望值的方法
估計最佳線性組合中的係數。在此,我們推導所提出參數,$R!O!C_{t}$及$A!U!C_{t}$估計式之一致性。
更進一步,藉助模擬檢視估計式之有限樣本性質,並應用所提出之估計方法在心血管疾病的資料上
來改善預測心血管疾病死亡狀態及非限定因素死亡狀態的準確度。
zh_TW
dc.description.abstractIn the time-dependent receiver operating characteristic (ROC) curve
analysis with several baseline markers, research interest focuses on
seeking an appropriate composition score of these potential markers
to improve the performance of individual markers in early prediction
of vital status. Under the validity of a generalized linear model
for the vital status at each time point within the study period, an
optimal linear composition score is shown to have a best ROC curve
among all functions of the markers. Based on censored survival data,
the inverse probability weighting approach was considered to
estimate the time-varying coefficients in the previous paper.
Without making assumption on the relationship between censoring time
and markers, we propose an imputation estimation method. The
consistency of the parameter estimators and the estimators of ROC
curve and area under ROC curve (AUC) at each time point is also
established in this article. However, the inverse probability
weighting approach will introduce a bias when the selection
probability is incorrectly specified in the estimating equations.
The performance of both estimation procedures are examined through a
class of numerical studies. Applying these methods to an angiography
cohort, our estimation procedures are shown to be useful in
predicting the vital outcomes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:31:24Z (GMT). No. of bitstreams: 1
ntu-96-R94221027-1.pdf: 239180 bytes, checksum: 79a31572b2db3242e9f9dc09d91b5f02 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of Contents
Table of Contents ii
List of Tables iv
Acknowledgements vi
Abstract vii
摘要viii
1 Introduction 1
2 Optimal Composition Score and Estimation 3
2.1 Model and Optimal Linear Combination Score . . . . . . . . . . . . . 3
2.1.1 Estimation of Time-Varying Coefficients . . . . . . . . . . . . 4
2.1.2 Inverse Probability Weighting Method . . . . . . . . . . . . . 4
2.1.3 Imputation Estimation Method . . . . . . . . . . . . . . . . . 5
2.2 Estimation of Time-Dependent ROC Curves and AUC . . . . . . . . 7
3 Asymptotic Properties 9
3.1 Consistency of bθt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Consistency of dAUCt . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Monte Carlo Simulations 13
4.1 First Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Second Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Application to an Angiography Cohort 25
6 Discussion 30
Bibliography 31
dc.language.isozh-TW
dc.title多重生物指標最佳線性組合的嵌入估計法zh_TW
dc.titleImputation Estimation Method for the Optimal Linear Composition of Multiple Biomarkersen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宏(Hung Chen),張子貴
dc.subject.keyword接受器操作特性曲線,一致性,廣義線性模型,zh_TW
dc.subject.keywordAUC,consistency,generalized linear model,inverse probability weighting,imputation,markers,optimal linear composition score,ROC,selection probability,survival data.,en
dc.relation.page32
dc.rights.note有償授權
dc.date.accepted2007-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
233.57 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved