Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26719
Title: R^3 上的 Fary-Milnor 定理
The Fary-Milnor Theorem on R^3
Authors: Yu-Lu Lin
林玉呂
Advisor: 王藹農
Keyword: 結,扭結,總曲率,
Fary-Milnor,total curvature,knotted,
Publication Year : 2008
Degree: 碩士
Abstract: Fary-Milnor 定理: 一條空間中的簡單封閉扭結(knotted simple closed curve)其總曲率必大於4π。也就是說,若γ:[0,l]→R^3為一和圓等倫(isotopic)且以弧長s為參數的曲線,k(s)為曲率,則∫|k(s)|ds>4π。
我們將說明這個定理適用於簡單封閉的多邊形。然後由於一條簡單封閉曲線總是能夠等倫於此曲線的某個內接多邊形,而且一個內接多邊形的總曲率不會超過原來曲線的總曲率,因此便證得了 Fary-Milnor 定理。
The Fary-Milnor theorem states that the total curvature of a knotted simple closed curve in R^3 is greater than 4π. That is, let γ:[0,l]→R^3 be isotopic to S^1 and be parametrized by arc length s with curvature k(s), then ∫|k(s)|ds>4π.
We are going to show this theorem for simple closed ploygons since a simple closed curve of finite total curvature is isotopic to an inscribed polygon, and the total curvature of an inscribed polygon never exceeds that of the original curve.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26719
Fulltext Rights: 未授權
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-97-1.pdf
  Restricted Access
189.18 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved