請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26719完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王藹農 | |
| dc.contributor.author | Yu-Lu Lin | en |
| dc.contributor.author | 林玉呂 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:22:23Z | - |
| dc.date.copyright | 2008-07-26 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-24 | |
| dc.identifier.citation | [1] Manfredo P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., 1976, Chapter 5.
[2] Sebastian Montiel, Antonio Ros, Curves and Surfaces, American Mathematical Society, 2005, Chapter 9. [3] Stephanie B. Alexander, Richard L. Bishop, The Fary-Milnor Theorem in Hadamard Manifolds, Vol. 126, No. 11, Nov. 1998, 3427-3436. [4] J. W. Milnor, On the Total Curvature of Knots, Ann. of Math. 52 (2) (1950), 248-257. MR 12:273c. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26719 | - |
| dc.description.abstract | Fary-Milnor 定理: 一條空間中的簡單封閉扭結(knotted simple closed curve)其總曲率必大於4π。也就是說,若γ:[0,l]→R^3為一和圓等倫(isotopic)且以弧長s為參數的曲線,k(s)為曲率,則∫|k(s)|ds>4π。
我們將說明這個定理適用於簡單封閉的多邊形。然後由於一條簡單封閉曲線總是能夠等倫於此曲線的某個內接多邊形,而且一個內接多邊形的總曲率不會超過原來曲線的總曲率,因此便證得了 Fary-Milnor 定理。 | zh_TW |
| dc.description.abstract | The Fary-Milnor theorem states that the total curvature of a knotted simple closed curve in R^3 is greater than 4π. That is, let γ:[0,l]→R^3 be isotopic to S^1 and be parametrized by arc length s with curvature k(s), then ∫|k(s)|ds>4π.
We are going to show this theorem for simple closed ploygons since a simple closed curve of finite total curvature is isotopic to an inscribed polygon, and the total curvature of an inscribed polygon never exceeds that of the original curve. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:22:23Z (GMT). No. of bitstreams: 1 ntu-97-R94221035-1.pdf: 193724 bytes, checksum: d6348448c3ff72c4ef4d5b10c83149e2 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | Abstract in Chinese i
Abstract ii 1 Introduction 1 2 Preliminary 2 3 Main Results 4 References 10 | |
| dc.language.iso | en | |
| dc.subject | 總曲率 | zh_TW |
| dc.subject | 結 | zh_TW |
| dc.subject | 扭結 | zh_TW |
| dc.subject | total curvature | en |
| dc.subject | knotted | en |
| dc.subject | Fary-Milnor | en |
| dc.title | R^3 上的 Fary-Milnor 定理 | zh_TW |
| dc.title | The Fary-Milnor Theorem on R^3 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張海潮,鄭日新 | |
| dc.subject.keyword | 結,扭結,總曲率, | zh_TW |
| dc.subject.keyword | Fary-Milnor,total curvature,knotted, | en |
| dc.relation.page | 13 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 189.18 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
