Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26719
標題: R^3 上的 Fary-Milnor 定理
The Fary-Milnor Theorem on R^3
作者: Yu-Lu Lin
林玉呂
指導教授: 王藹農
關鍵字: 結,扭結,總曲率,
Fary-Milnor,total curvature,knotted,
出版年 : 2008
學位: 碩士
摘要: Fary-Milnor 定理: 一條空間中的簡單封閉扭結(knotted simple closed curve)其總曲率必大於4π。也就是說,若γ:[0,l]→R^3為一和圓等倫(isotopic)且以弧長s為參數的曲線,k(s)為曲率,則∫|k(s)|ds>4π。
我們將說明這個定理適用於簡單封閉的多邊形。然後由於一條簡單封閉曲線總是能夠等倫於此曲線的某個內接多邊形,而且一個內接多邊形的總曲率不會超過原來曲線的總曲率,因此便證得了 Fary-Milnor 定理。
The Fary-Milnor theorem states that the total curvature of a knotted simple closed curve in R^3 is greater than 4π. That is, let γ:[0,l]→R^3 be isotopic to S^1 and be parametrized by arc length s with curvature k(s), then ∫|k(s)|ds>4π.
We are going to show this theorem for simple closed ploygons since a simple closed curve of finite total curvature is isotopic to an inscribed polygon, and the total curvature of an inscribed polygon never exceeds that of the original curve.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26719
全文授權: 未授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
189.18 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved