Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23696| Title: | 等周不等式的探討 A Survey on the Isoperimetric Inequalities |
| Authors: | Hung-Ju Liu 劉鴻儒 |
| Advisor: | 張樹城 |
| Keyword: | 等周不等式,等周問題, Isoperimetric Inequalities,Isoperimetric Problem, |
| Publication Year : | 2011 |
| Degree: | 碩士 |
| Abstract: | 主要是在探討R^2上的等周不等式,以及它在surface,R^n,manifold immersed in R^n上的變形!大綱如下:
• 首先我用分析的手法論證R^2上的等周不等式 • 利用Gauss-Bonet定理探討等周不等式在surface in R^3的變形 • 利用Minkowski-Brunn Inequality 去論證R^n上的等周不等式 • 利用R^n上的等周不等式去討論R^n上的等周問題 • 利用適當的覆蓋定理去論證manifold immersed in R^n上的等周不等式 這篇論文主要是探討各個情況下等周不等式的樣子,所以對於regularity都假設得很好,以避開一些幾何測度論的問 Let C be a simple closed curve of length L on R^2, and Ω be the domain bounded by C of area A, then L^2 ≥ 4πA...... (∗) This is the simplest case of isoperimetric inequalities. We concentrate on the isoperimetric inequality (∗) and its extension. The contents in brief are as follows: • The classical case for curve in plane • Analogs of (∗) for domains on surfaces • Extensions of (∗) to domain in R^n • Solve the isoperimetric problem in R^n • Variants of (∗) for smooth manifolds immersed in R^n |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23696 |
| Fulltext Rights: | 未授權 |
| Appears in Collections: | 數學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 455.75 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
