請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23696完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張樹城 | |
| dc.contributor.author | Hung-Ju Liu | en |
| dc.contributor.author | 劉鴻儒 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:07:20Z | - |
| dc.date.copyright | 2011-07-06 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-20 | |
| dc.identifier.citation | [1] Yu. D. Burago and V. A. Zalgaller: Geometric Inequalities. Springer-Verlag,Berlin. (1987)
[2] Isaac Chavel: Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives. Cambridge University Press. (2001) [3] Do Carmo Manfredo: Differential Geometry Curves and Surfaces. Prentice Hall,New Jersey. (1976) [4] Herbert Federer: Geometric Measure Theory. Springer-Verlag, Berlin. (1965) [5] Robert Osserman: The Isoperimetric Inequality. Bulletin of The American Mathematical Society. Vol.84, 1182-1238.(1978) [6] Andrejs Treibergs: Inequalities that Imply the Isoperimetric Inequality. Department of Mathematics. University of Utah. (2002) [7] Peter Li: Lecture Notes on Geometric Analysis. Department of Mathematics. University of California. (1992) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23696 | - |
| dc.description.abstract | 主要是在探討R^2上的等周不等式,以及它在surface,R^n,manifold immersed in R^n上的變形!大綱如下:
• 首先我用分析的手法論證R^2上的等周不等式 • 利用Gauss-Bonet定理探討等周不等式在surface in R^3的變形 • 利用Minkowski-Brunn Inequality 去論證R^n上的等周不等式 • 利用R^n上的等周不等式去討論R^n上的等周問題 • 利用適當的覆蓋定理去論證manifold immersed in R^n上的等周不等式 這篇論文主要是探討各個情況下等周不等式的樣子,所以對於regularity都假設得很好,以避開一些幾何測度論的問 | zh_TW |
| dc.description.abstract | Let C be a simple closed curve of length L on R^2, and Ω be the domain bounded by C of area A, then
L^2 ≥ 4πA...... (∗) This is the simplest case of isoperimetric inequalities. We concentrate on the isoperimetric inequality (∗) and its extension. The contents in brief are as follows: • The classical case for curve in plane • Analogs of (∗) for domains on surfaces • Extensions of (∗) to domain in R^n • Solve the isoperimetric problem in R^n • Variants of (∗) for smooth manifolds immersed in R^n | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:07:20Z (GMT). No. of bitstreams: 1 ntu-100-R98221004-1.pdf: 466685 bytes, checksum: 38f2c35d0ab350d0712451bad040508b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………i
誌謝……………………………………………………………………ii 中文摘要………………………………………………………………iii 英文摘要………………………………………………………………iv 第一章Introduction…………………………………………………………… 2 第二章 The isoperimetric inequality on R^2…………………………… 4 第三章 The isoperimetric inequality on surface…………………………7 第三章 The isoperimetric inequality for Minkowski content………… 9 4.1 Minkowski-Brunn’s inequality……………………………… 9 4.2 Blashcke Selection Theorem……………………………………12 第五章 The isoperimetric problem for R^n……………………………… 16 第六章 The isoperimetric inequality involving mean curvature…… 23 6.1 First variation of area. Radial variation and application…… 24 6.2 The isoperimetric inequality involvingmean curvature… 28 參考文獻……………………………………………………………… 33 | |
| dc.language.iso | en | |
| dc.title | 等周不等式的探討 | zh_TW |
| dc.title | A Survey on the Isoperimetric Inequalities | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王藹農,陳瑞堂 | |
| dc.subject.keyword | 等周不等式,等周問題, | zh_TW |
| dc.subject.keyword | Isoperimetric Inequalities,Isoperimetric Problem, | en |
| dc.relation.page | 33 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-06-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 455.75 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
