Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21098| Title: | Heston模型樹評價選擇權 Tree-Based Methods for Option Pricing in the Heston Model |
| Authors: | Hsuan-Yen Lin 林宣延 |
| Advisor: | 呂育道 |
| Keyword: | 隨機波動率模型,Heston模型,三元樹, Stochastic volatility,Heston model,Trinomial tree, |
| Publication Year : | 2020 |
| Degree: | 碩士 |
| Abstract: | 自從「微笑波動率」的現象被察覺之後,研究者們紛紛提出各種不同的模型來解釋它。在隨機波動率的模型裡,由於波動率不是常數,用來逼近連續時間股價的樹可能無法重合,導致指數的運算時間,使得樹的方法評價選擇權是不切實際的。此論文在Heston模型的假設下使用網格間隔不均勻的三維網格評價歐式選擇權。變異數樹允許節點分支多格跳躍為了避免負機率法生,但是分支跳躍過大仍可能導致樹中與價格相關的維度出現負機率。本論文使用一個方法來改善這個情況,藉由讓樹的底部對齊某個網格點,該網格點會使得變異數樹的節點分支跳躍幅度變小。 Since the phenomenon of volatility smile has been discovered, researchers proposed many kinds of models to explain it. In the stochastic-volatility model, the tree used to approximate the continuous-time stochastic process of the underlying asset may not recombine duo to the non-constant volatility. An exponential tree leads to exponential running time which is impractical. This thesis prices European options in the Heston stochastic-volatility model on a 3-dimensional grid with a non-uniform grid spacing. The tree nodes of the variance process are allowed to jump a multiple number of nodes in order to avoid negative probabilities. But such large jumps may cause negative probabilities in the price-related dimension of the tree. This thesis uses a way to ameliorate this situation by aligning the bottom of the tree at a certain level to make the size of upward jump smaller. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21098 |
| DOI: | 10.6342/NTU202000085 |
| Fulltext Rights: | 未授權 |
| Appears in Collections: | 資訊工程學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-109-1.pdf Restricted Access | 755.6 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
