請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21098完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂育道 | |
| dc.contributor.author | Hsuan-Yen Lin | en |
| dc.contributor.author | 林宣延 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:26:57Z | - |
| dc.date.copyright | 2020-01-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-14 | |
| dc.identifier.citation | [1] Natalia A. Beliaeva and Sanjay K. Nawalka. “A Simple Approach to Pricing American Options under the Heston Stochastic Volatility Model.” Journal of Derivatives, 17, No. 4 (Summer 2010), 25–43.
[2] Ming-Hsin Chou. “An Efficient Tree for the Heston Stochastic-Volatility Model.” Master’s Thesis, Department of Finance, National Taiwan University, Taipei, Taiwan, (January 2016) [3] John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross. “A Theory of the Term Structure of Interest Rates.” Econometrica , 53, No. 2 (Mar 1985), 385-407. [4] John C. Cox, Stephen A.Ross Mark Rubinstein. “Option pricing: A simplified approach.” Journal of Financial Economics, 7, No. 3 (September 1979), 229-263. [5] Tian-Shyr Dai and Yuh-Dauh Lyuu. “The Bino-Trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing.” Journal of Derivatives, 17, No. 4 (Summer 2010), 7–24. [6] Tian-Shyr Dai, Chuan-Ju Wang and Yuh-Dauh Lyuu. “A Multiphase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables.” Journal of Futures Markets, 33, No. 9 (September 2013), 795–826. [7] John Hull and Alan White. “The Pricing of Options on Assets with Stochastic Volatilities.” Journal of Finance, 42, No. 2 (June 1987), 281–300. [8] Dietmar P.J. Leisen. “Stock Evolution under Stochastic Volatility: A Discrete Approach.” Journal of Derivatives, 8, No. 2 (Winter 2000), 9–27. [9] Yuh-Dauh Lyuu and Chi-Ning Wu. “On Accurate and Provably Efficient GARCH Option Pricing Algorithms.” Quantitative Finance, 5, No. 2 (April 2005), 181–198. Sanjay K. Nawalka and Natalia A. Beliaeva. “Efficient Trees for CIR and CEV Short Rate Models.” Journal of Alternative Investments, 10, No. 1 (Summer 2007), 71–90. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21098 | - |
| dc.description.abstract | 自從「微笑波動率」的現象被察覺之後,研究者們紛紛提出各種不同的模型來解釋它。在隨機波動率的模型裡,由於波動率不是常數,用來逼近連續時間股價的樹可能無法重合,導致指數的運算時間,使得樹的方法評價選擇權是不切實際的。此論文在Heston模型的假設下使用網格間隔不均勻的三維網格評價歐式選擇權。變異數樹允許節點分支多格跳躍為了避免負機率法生,但是分支跳躍過大仍可能導致樹中與價格相關的維度出現負機率。本論文使用一個方法來改善這個情況,藉由讓樹的底部對齊某個網格點,該網格點會使得變異數樹的節點分支跳躍幅度變小。 | zh_TW |
| dc.description.abstract | Since the phenomenon of volatility smile has been discovered, researchers proposed many kinds of models to explain it. In the stochastic-volatility model, the tree used to approximate the continuous-time stochastic process of the underlying asset may not recombine duo to the non-constant volatility. An exponential tree leads to exponential running time which is impractical. This thesis prices European options in the Heston stochastic-volatility model on a 3-dimensional grid with a non-uniform grid spacing. The tree nodes of the variance process are allowed to jump a multiple number of nodes in order to avoid negative probabilities. But such large jumps may cause negative probabilities in the price-related dimension of the tree. This thesis uses a way to ameliorate this situation by aligning the bottom of the tree at a certain level to make the size of upward jump smaller. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:26:57Z (GMT). No. of bitstreams: 1 ntu-109-R03922061-1.pdf: 773738 bytes, checksum: 0b1245089075449942a10a584546f3b7 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii ABSTRACT iii 一、 緒論 1 二、 Heston模型 3 三、 建立V_t過程的樹 5 四、 Y_t過程的基本網格 13 五、 樹狀結構的連接 18 六、 針對Heston模型的三維樹 22 七、 實驗結果 23 八、 結論 29 附錄A 30 附錄B 31 參考文獻 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 三元樹 | zh_TW |
| dc.subject | 隨機波動率模型 | zh_TW |
| dc.subject | Heston模型 | zh_TW |
| dc.subject | Stochastic volatility | en |
| dc.subject | Trinomial tree | en |
| dc.subject | Heston model | en |
| dc.title | Heston模型樹評價選擇權 | zh_TW |
| dc.title | Tree-Based Methods for Option Pricing in the Heston Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 金國興,張經略 | |
| dc.subject.keyword | 隨機波動率模型,Heston模型,三元樹, | zh_TW |
| dc.subject.keyword | Stochastic volatility,Heston model,Trinomial tree, | en |
| dc.relation.page | 36 | |
| dc.identifier.doi | 10.6342/NTU202000085 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-01-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 755.6 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
