Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21098
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道
dc.contributor.authorHsuan-Yen Linen
dc.contributor.author林宣延zh_TW
dc.date.accessioned2021-06-08T03:26:57Z-
dc.date.copyright2020-01-21
dc.date.issued2020
dc.date.submitted2020-01-14
dc.identifier.citation[1] Natalia A. Beliaeva and Sanjay K. Nawalka. “A Simple Approach to Pricing American Options under the Heston Stochastic Volatility Model.” Journal of Derivatives, 17, No. 4 (Summer 2010), 25–43.
[2] Ming-Hsin Chou. “An Efficient Tree for the Heston Stochastic-Volatility Model.” Master’s Thesis, Department of Finance, National Taiwan University, Taipei, Taiwan, (January 2016)
[3] John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross. “A Theory of the Term Structure of Interest Rates.” Econometrica , 53, No. 2 (Mar 1985), 385-407.
[4] John C. Cox, Stephen A.Ross Mark Rubinstein. “Option pricing: A simplified approach.” Journal of Financial Economics, 7, No. 3 (September 1979), 229-263.
[5] Tian-Shyr Dai and Yuh-Dauh Lyuu. “The Bino-Trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing.” Journal of Derivatives, 17, No. 4 (Summer 2010), 7–24.
[6] Tian-Shyr Dai, Chuan-Ju Wang and Yuh-Dauh Lyuu. “A Multiphase, Flexible, and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables.” Journal of Futures Markets, 33, No. 9 (September 2013), 795–826.
[7] John Hull and Alan White. “The Pricing of Options on Assets with Stochastic Volatilities.” Journal of Finance, 42, No. 2 (June 1987), 281–300.
[8] Dietmar P.J. Leisen. “Stock Evolution under Stochastic Volatility: A Discrete Approach.” Journal of Derivatives, 8, No. 2 (Winter 2000), 9–27.
[9] Yuh-Dauh Lyuu and Chi-Ning Wu. “On Accurate and Provably Efficient GARCH Option Pricing Algorithms.” Quantitative Finance, 5, No. 2 (April 2005), 181–198.
Sanjay K. Nawalka and Natalia A. Beliaeva. “Efficient Trees for CIR and CEV Short Rate Models.” Journal of Alternative Investments, 10, No. 1 (Summer 2007), 71–90.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21098-
dc.description.abstract自從「微笑波動率」的現象被察覺之後,研究者們紛紛提出各種不同的模型來解釋它。在隨機波動率的模型裡,由於波動率不是常數,用來逼近連續時間股價的樹可能無法重合,導致指數的運算時間,使得樹的方法評價選擇權是不切實際的。此論文在Heston模型的假設下使用網格間隔不均勻的三維網格評價歐式選擇權。變異數樹允許節點分支多格跳躍為了避免負機率法生,但是分支跳躍過大仍可能導致樹中與價格相關的維度出現負機率。本論文使用一個方法來改善這個情況,藉由讓樹的底部對齊某個網格點,該網格點會使得變異數樹的節點分支跳躍幅度變小。zh_TW
dc.description.abstractSince the phenomenon of volatility smile has been discovered, researchers proposed many kinds of models to explain it. In the stochastic-volatility model, the tree used to approximate the continuous-time stochastic process of the underlying asset may not recombine duo to the non-constant volatility. An exponential tree leads to exponential running time which is impractical. This thesis prices European options in the Heston stochastic-volatility model on a 3-dimensional grid with a non-uniform grid spacing. The tree nodes of the variance process are allowed to jump a multiple number of nodes in order to avoid negative probabilities. But such large jumps may cause negative probabilities in the price-related dimension of the tree. This thesis uses a way to ameliorate this situation by aligning the bottom of the tree at a certain level to make the size of upward jump smaller.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:26:57Z (GMT). No. of bitstreams: 1
ntu-109-R03922061-1.pdf: 773738 bytes, checksum: 0b1245089075449942a10a584546f3b7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
ABSTRACT iii
一、 緒論 1
二、 Heston模型 3
三、 建立V_t過程的樹 5
四、 Y_t過程的基本網格 13
五、 樹狀結構的連接 18
六、 針對Heston模型的三維樹 22
七、 實驗結果 23
八、 結論 29
附錄A 30
附錄B 31
參考文獻 35
dc.language.isozh-TW
dc.subject三元樹zh_TW
dc.subject隨機波動率模型zh_TW
dc.subjectHeston模型zh_TW
dc.subjectStochastic volatilityen
dc.subjectTrinomial treeen
dc.subjectHeston modelen
dc.titleHeston模型樹評價選擇權zh_TW
dc.titleTree-Based Methods for Option Pricing in the Heston Modelen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee金國興,張經略
dc.subject.keyword隨機波動率模型,Heston模型,三元樹,zh_TW
dc.subject.keywordStochastic volatility,Heston model,Trinomial tree,en
dc.relation.page36
dc.identifier.doi10.6342/NTU202000085
dc.rights.note未授權
dc.date.accepted2020-01-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
755.6 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved