Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16037
Title: 個人喜好在社群網路中傳播行為的預測
Predicting the Diffusion of Preferences on Social Networks
Authors: Chin-Hua Tsai
蔡青樺
Advisor: 林守德
Keyword: 個人喜好傳播行為,社群網路,排序學習,
Preference Diffusion,Social Network,Learning-to-Rank,
Publication Year : 2012
Degree: 碩士
Abstract: 一直以來,研究喜好如何在社群網路中擴散都是熱門課題。相較於過去往往視喜好為一個實數或單純的布林值,我們改採排名的方式解讀喜好,因而適用許多經典排序學習演算法以解決問題;但現實生活中囊括社群網路、時間以及喜好等完整資訊之數據取得不易,我們為此提出如何從各種數據內,間接提取所需訊息的替代方案。經實驗證明,在不同資料集上,本方法表現皆優於其他傳播模型。
This work tries to bring a marriage between two areas: social network analysis and machine learning, through the study of exploiting ranking-based learning models for preference prediction on social networks. The diffusion of information on social networks has been studied for decades. This paper proposes a study of the diffusion of human preference on social networks, which is a novel problem to solve in this direction. In general, there are two types of approaches proposed to predict the diffusion of information on networks: the model-driven and data-driven approaches. The former assumes an underlying mechanism for diffusion, and the later tries to learn a more flexible model given data. This paper first proposes a simple modification on the existing model-driven binary diffusion approaches for preference list diffusion, and then addresses some concerns by proposing a rank-learning based data-driven approach. To evaluate the approaches, we propose two scenarios which data can be obtained from publicly available sources: the citation behavior and the microblogging behavior changes. The experiments show that the proposed ranking-based data-driven method outperforms all the other competitors significantly in both evaluation scenarios.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16037
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
4.26 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved