Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16037
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林守德
dc.contributor.authorChin-Hua Tsaien
dc.contributor.author蔡青樺zh_TW
dc.date.accessioned2021-06-07T17:58:52Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-08-09
dc.identifier.citation[1] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res.
[2] C.-C. Chang and C.-J. Lin. Libsvm: A library for support vector machines. ACM TIST, 2(3):27, 2011.
[3] H. Fei, R. Jiang, Y. Yang, B. Luo, and J. Huan. Content based social behavior prediction: a multi-task learning approach. In C. Macdonald, I. Ounis, and I. Ruthven, editors, CIKM, pages 995–1000. ACM, 2011.
[4] W. Galuba, K. Aberer, D. Chakraborty, Z. Despotovic, andW. Kellerer. Outtweeting the Twitterers - Predicting Information Cascades in Microblogs. In 3rd Workshop on Online Social Networks (WOSN’10), 2010.
[5] J. Gehrke, P. Ginsparg, and J. M. Kleinberg. Overview of the 2003 kdd cup. SIGKDD Explorations, 5(2):149–151, 2003.
[6] M. Granovetter. Threshold models of collective behavior. The American Journal of Sociology, 83(6):1420–1443, 1978.
[7] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In Proceedings of the 13th international conference on World Wide Web, WWW ’04, pages 491–501, New York, NY, USA, 2004. ACM.
[8] J. F. E. IV, F. Fogelman-Souli’e, P. A. Flach, and M. J. Zaki, editors. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 - July 1, 2009. ACM, 2009.
[9] B. L. Jacob Goldenberg and E. Muller. Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Academy of Marketing Science Review, (9), 2001.
[10] T. Joachims. Training linear svms in linear time. In T. Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, KDD, pages 217–226. ACM, 2006.
[11] D. Kempe, J. M. Kleinberg, and ’ E. Tardos. Maximizing the spread of influence through a social network. In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors, KDD, pages 137–146. ACM, 2003.
[12] W. O. Kermack and A. G. Mckendrick. A contribution to the mathematical theory of epidemics. Proc R Soc Lond A, 115:700–721, 1927.
[13] T.-T. Kuo, S.-C. Hung, W.-S. Lin, S.-D. Lin, T.-C. Peng, and C.-C. Shih. Assessing the quality of diffusion models using real-world social network data. Technologies and Applications of Artificial Intelligence, International Conference on, 0:200–205, 2011.
[14] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading behavior in large blog graphs: Patterns and a model. In Society of Applied and Industrial Mathematics: Data Mining (SDM07), 2007.
[15] H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social networks using heat diffusion processes for marketing candidates selection. In J. G. Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang, D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury, editors, CIKM, pages 233–242. ACM, 2008.
[16] S. Petrovic, M. Osborne, and V. Lavrenko. Rt to win! predicting message propagation in twitter. In L. A. Adamic, R. A. Baeza-Yates, and S. Counts, editors, ICWSM. The AAAI Press, 2011.
[17] X.-H. Phan and C.-T. Nguyen. Gibbslda++: A c/c++ implementation of latent dirichlet allocation (lda), 2007.
[18] K. Saito, M. Kimura, K. Ohara, and H. Motoda. Selecting information diffusion models over social networks for behavioral analysis. In ECML/PKDD (3), pages 180–195, 2010.
[19] H. Yang, I. King, and M. R. Lyu. Diffusionrank: a possible penicillin for web spamming. In W. Kraaij, A. P. de Vries, C. L. A. Clarke, N. Fuhr, and N. Kando, editors, SIGIR, pages 431–438. ACM, 2007.
[20] J. Zhu, F. Xiong, D. Piao, Y. Liu, and Y. Zhang. Statistically modeling the effectiveness of disaster information in social media. In GHTC, pages 431–436. IEEE, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16037-
dc.description.abstract一直以來,研究喜好如何在社群網路中擴散都是熱門課題。相較於過去往往視喜好為一個實數或單純的布林值,我們改採排名的方式解讀喜好,因而適用許多經典排序學習演算法以解決問題;但現實生活中囊括社群網路、時間以及喜好等完整資訊之數據取得不易,我們為此提出如何從各種數據內,間接提取所需訊息的替代方案。經實驗證明,在不同資料集上,本方法表現皆優於其他傳播模型。zh_TW
dc.description.abstractThis work tries to bring a marriage between two areas: social network analysis and machine learning, through the study of exploiting ranking-based learning models for preference prediction on social networks. The diffusion of information on social networks has been studied for decades. This paper proposes a study of the diffusion of human preference on social networks, which is a novel problem to solve in this direction. In general, there are two types of approaches proposed to predict the diffusion of information on networks: the model-driven and data-driven approaches. The former assumes an underlying mechanism for diffusion, and the later tries to learn a more flexible model given data. This paper first proposes a simple modification on the existing model-driven binary diffusion approaches for preference list diffusion, and then addresses some concerns by proposing a rank-learning based data-driven approach. To evaluate the approaches, we propose two scenarios which data can be obtained from publicly available sources: the citation behavior and the microblogging behavior changes. The experiments show that the proposed ranking-based data-driven method outperforms all the other competitors significantly in both evaluation scenarios.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:58:52Z (GMT). No. of bitstreams: 1
ntu-101-R98922165-1.pdf: 4360922 bytes, checksum: 620228a302840cf9553ab21edafd7ac2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Model-Driven Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Data-Driven Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Preference Diffusion Definition . . . . . . . . . . . . . . . . . . . . . 7
3.2 Modifying Existing Model for Preference Diffusion . . . . . . . . . . . . 7
3.3 Learning-based Model for Preference Diffusion . . . . . . . . . . . . . . 8
3.3.1 Machine-Learned Ranking . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 Feature Generation . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.1 Citation Behavior Change . . . . . . . . . . . . . . . . . . . . . 11
4.1.2 Change of Preferred Topics in Microblogging . . . . . . . . . . . . 12
4.2 Baseline Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
dc.language.isoen
dc.subject排序學習zh_TW
dc.subject個人喜好傳播行為zh_TW
dc.subject社群網路zh_TW
dc.subjectLearning-to-Ranken
dc.subjectSocial Networken
dc.subjectPreference Diffusionen
dc.title個人喜好在社群網路中傳播行為的預測zh_TW
dc.titlePredicting the Diffusion of Preferences on Social Networksen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建錦,蔡銘峰,沈錳坤
dc.subject.keyword個人喜好傳播行為,社群網路,排序學習,zh_TW
dc.subject.keywordPreference Diffusion,Social Network,Learning-to-Rank,en
dc.relation.page21
dc.rights.note未授權
dc.date.accepted2012-08-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved